Nuprl Lemma : geo-le_weakening
∀[e:BasicGeometry]. ∀[p,q:Length].  p ≤ q supposing p = q ∈ Length
Proof
Definitions occuring in Statement : 
geo-le: p ≤ q, 
geo-length-type: Length, 
basic-geometry: BasicGeometry, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
geo-length-type: Length, 
prop: ℙ, 
quotient: x,y:A//B[x; y], 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
guard: {T}, 
squash: ↓T, 
all: ∀x:A. B[x], 
basic-geometry: BasicGeometry, 
euclidean-plane: EuclideanPlane
Lemmas referenced : 
sq_stable__geo-le, 
subtype-geo-length-type, 
geo-le_wf, 
equal-wf-base, 
geo-eq_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
equal_wf, 
geo-length-type_wf, 
geo-between-trivial, 
geo-X_wf, 
geo-point_wf, 
geo-between_wf, 
geo-O_wf, 
geo-le_witness
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
pointwiseFunctionalityForEquality, 
sqequalRule, 
pertypeElimination, 
productElimination, 
productEquality, 
because_Cache, 
applyEquality, 
instantiate, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
setElimination, 
rename, 
hyp_replacement, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_functionElimination, 
setEquality
Latex:
\mforall{}[e:BasicGeometry].  \mforall{}[p,q:Length].    p  \mleq{}  q  supposing  p  =  q
Date html generated:
2017_10_02-PM-04_52_22
Last ObjectModification:
2017_08_17-PM-01_34_41
Theory : euclidean!plane!geometry
Home
Index