Nuprl Lemma : geo-zero-lt-iff

e:BasicGeometry. ∀u,v:Point.  (0 < |uv| ⇐⇒ u ≠ v)


Proof




Definitions occuring in Statement :  geo-lt: p < q geo-length: |s| geo-zero-length: 0 geo-mk-seg: ab basic-geometry: BasicGeometry geo-sep: a ≠ b geo-point: Point all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  all: x:A. B[x] geo-lt: p < q uall: [x:A]. B[x] member: t ∈ T geo-zero-length: 0 iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] subtype_rel: A ⊆B prop: basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane rev_implies:  Q cand: c∧ B squash: T true: True uimplies: supposing a guard: {T}
Lemmas referenced :  geo-add-length-zero geo-sep_wf geo-le_wf geo-length_wf geo-mk-seg_wf geo-sep-sym geo-length-flip iff_weakening_equal geo-le-same geo-add-length_wf geo-zero-length_wf squash_wf true_wf geo-length-type_wf geo-add-length-comm subtype_rel_self geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-le-iff geo-ge-sep
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_pairFormation sqequalRule productIsType because_Cache universeIsType applyEquality hypothesis setElimination rename dependent_pairFormation_alt dependent_functionElimination independent_functionElimination lambdaEquality_alt imageElimination natural_numberEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry independent_isectElimination productElimination inhabitedIsType promote_hyp instantiate universeEquality

Latex:
\mforall{}e:BasicGeometry.  \mforall{}u,v:Point.    (0  <  |uv|  \mLeftarrow{}{}\mRightarrow{}  u  \mneq{}  v)



Date html generated: 2019_10_16-PM-01_19_46
Last ObjectModification: 2018_11_12-PM-03_20_39

Theory : euclidean!plane!geometry


Home Index