Nuprl Lemma : geo-zero-lt-iff
∀e:BasicGeometry. ∀u,v:Point.  (0 < |uv| 
⇐⇒ u ≠ v)
Proof
Definitions occuring in Statement : 
geo-lt: p < q
, 
geo-length: |s|
, 
geo-zero-length: 0
, 
geo-mk-seg: ab
, 
basic-geometry: BasicGeometry
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
geo-lt: p < q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
geo-zero-length: 0
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
basic-geometry: BasicGeometry
, 
euclidean-plane: EuclideanPlane
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
squash: ↓T
, 
true: True
, 
uimplies: b supposing a
, 
guard: {T}
Lemmas referenced : 
geo-add-length-zero, 
geo-sep_wf, 
geo-le_wf, 
geo-length_wf, 
geo-mk-seg_wf, 
geo-sep-sym, 
geo-length-flip, 
iff_weakening_equal, 
geo-le-same, 
geo-add-length_wf, 
geo-zero-length_wf, 
squash_wf, 
true_wf, 
geo-length-type_wf, 
geo-add-length-comm, 
subtype_rel_self, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-le-iff, 
geo-ge-sep
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_pairFormation, 
sqequalRule, 
productIsType, 
because_Cache, 
universeIsType, 
applyEquality, 
hypothesis, 
setElimination, 
rename, 
dependent_pairFormation_alt, 
dependent_functionElimination, 
independent_functionElimination, 
lambdaEquality_alt, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
productElimination, 
inhabitedIsType, 
promote_hyp, 
instantiate, 
universeEquality
Latex:
\mforall{}e:BasicGeometry.  \mforall{}u,v:Point.    (0  <  |uv|  \mLeftarrow{}{}\mRightarrow{}  u  \mneq{}  v)
Date html generated:
2019_10_16-PM-01_19_46
Last ObjectModification:
2018_11_12-PM-03_20_39
Theory : euclidean!plane!geometry
Home
Index