Step
*
6
1
1
1
1
1
of Lemma
eu-eq_dist-axiomsA
1. g : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. a' : Point
7. b' : Point
8. c' : Point
9. u : Point
10. c' # u
11. B(a'b'c')
12. B(a'uc')
13. ab ≅ a'b'
14. bb ≅ b'c'
15. cd ≅ a'u
16. a1 : Point
17. b1 : Point
18. c1 : Point
19. u1 : Point
20. c1 # u1
21. B(a1b1c1)
22. B(a1u1c1)
23. cd ≅ a1b1
24. dd ≅ b1c1
25. ab ≅ a1u1
26. b' ≡ c'
27. b1 ≡ c1
28. b' # u
29. b1 # u1
30. geo-seg-congruent(g; cd; a1b1)
31. geo-seg-congruent(g; cd; a'u)
32. geo-seg-congruent(g; ab; a'b')
33. geo-seg-congruent(g; ab; a1u1)
34. |a1u1| ≤ |a1u1|
35. u1 # b1
⊢ |a1u1| + |u1b1| ≤ |a1b1|
BY
{ (((InstLemma `geo-add-length-between` [⌜g⌝;⌜a1⌝;⌜u1⌝;⌜b1⌝]⋅ THEN Auto)
THENA ((Assert c1 ≡ b1 BY Auto) THEN EliminatePoint (-1) THEN Auto)
)
THEN (RWO "-1" 0 THEN Auto)
THEN InstLemma `geo-le_weakening` [⌜g⌝;⌜|a1u1| + |u1b1|⌝]⋅
THEN Auto) }
Latex:
Latex:
1. g : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. d : Point
6. a' : Point
7. b' : Point
8. c' : Point
9. u : Point
10. c' \# u
11. B(a'b'c')
12. B(a'uc')
13. ab \mcong{} a'b'
14. bb \mcong{} b'c'
15. cd \mcong{} a'u
16. a1 : Point
17. b1 : Point
18. c1 : Point
19. u1 : Point
20. c1 \# u1
21. B(a1b1c1)
22. B(a1u1c1)
23. cd \mcong{} a1b1
24. dd \mcong{} b1c1
25. ab \mcong{} a1u1
26. b' \mequiv{} c'
27. b1 \mequiv{} c1
28. b' \# u
29. b1 \# u1
30. geo-seg-congruent(g; cd; a1b1)
31. geo-seg-congruent(g; cd; a'u)
32. geo-seg-congruent(g; ab; a'b')
33. geo-seg-congruent(g; ab; a1u1)
34. |a1u1| \mleq{} |a1u1|
35. u1 \# b1
\mvdash{} |a1u1| + |u1b1| \mleq{} |a1b1|
By
Latex:
(((InstLemma `geo-add-length-between` [\mkleeneopen{}g\mkleeneclose{};\mkleeneopen{}a1\mkleeneclose{};\mkleeneopen{}u1\mkleeneclose{};\mkleeneopen{}b1\mkleeneclose{}]\mcdot{} THEN Auto)
THENA ((Assert c1 \mequiv{} b1 BY Auto) THEN EliminatePoint (-1) THEN Auto)
)
THEN (RWO "-1" 0 THEN Auto)
THEN InstLemma `geo-le\_weakening` [\mkleeneopen{}g\mkleeneclose{};\mkleeneopen{}|a1u1| + |u1b1|\mkleeneclose{}]\mcdot{}
THEN Auto)
Home
Index