Nuprl Lemma : geo-bisect-angle_wf

e:BasicGeometry. ∀a,b,c:Point.  (geo-bisect-angle(e;a;b;c) ∈ ℙ)


Proof




Definitions occuring in Statement :  geo-bisect-angle: geo-bisect-angle(e;a;b;c) basic-geometry: BasicGeometry geo-point: Point prop: all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  exists: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] and: P ∧ Q prop: geo-bisect-angle: geo-bisect-angle(e;a;b;c) member: t ∈ T all: x:A. B[x]
Lemmas referenced :  geo-cong-angle_wf geo-point_wf exists_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype geo-sep_wf
Rules used in proof :  lambdaEquality because_Cache independent_isectElimination instantiate hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction productEquality sqequalRule cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c:Point.    (geo-bisect-angle(e;a;b;c)  \mmember{}  \mBbbP{})



Date html generated: 2017_10_02-PM-06_24_19
Last ObjectModification: 2017_08_05-PM-04_18_20

Theory : euclidean!plane!geometry


Home Index