Nuprl Lemma : geo-colinear-swap
∀e:EuclideanPlane. ∀a,b,c:Point.  (Colinear(a;b;c) 
⇒ Colinear(b;a;c))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-colinear: Colinear(a;b;c)
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
geo-colinear: Colinear(a;b;c)
, 
not: ¬A
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
false: False
, 
guard: {T}
Lemmas referenced : 
geo-between-symmetry, 
geo-between_wf, 
istype-void, 
geo-colinear_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
introduction, 
independent_functionElimination, 
thin, 
productElimination, 
cut, 
hypothesis, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
isectElimination, 
independent_isectElimination, 
universeIsType, 
applyEquality, 
because_Cache, 
sqequalRule, 
independent_pairFormation, 
voidElimination, 
productIsType, 
functionIsType, 
instantiate, 
inhabitedIsType
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.    (Colinear(a;b;c)  {}\mRightarrow{}  Colinear(b;a;c))
Date html generated:
2019_10_16-PM-01_14_27
Last ObjectModification:
2018_11_12-PM-03_10_39
Theory : euclidean!plane!geometry
Home
Index