Nuprl Lemma : geo-cong-implies-ge
∀e:BasicGeometry. ∀a,b,c,d:Point.  (ab ≅ cd 
⇒ cd ≥ ab)
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry
, 
geo-ge: cd ≥ ab
, 
geo-congruent: ab ≅ cd
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
geo-point_wf, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
geo-congruent_wf, 
geo-congruent-symmetry, 
geo-congruent-implies-ge
Rules used in proof : 
sqequalRule, 
instantiate, 
applyEquality, 
hypothesis, 
dependent_functionElimination, 
independent_isectElimination, 
because_Cache, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,d:Point.    (ab  \00D0  cd  {}\mRightarrow{}  cd  \mgeq{}  ab)
Date html generated:
2017_10_02-PM-04_43_32
Last ObjectModification:
2017_08_05-AM-09_07_59
Theory : euclidean!plane!geometry
Home
Index