Nuprl Lemma : geo-convex-intersection
∀[g:BasicGeometry]. ∀[T:Type].  ∀P:T ⟶ Point ⟶ ℙ. ((∀t:T. IsConvex(x.P[t;x])) 
⇒ IsConvex(x.∀t:T. P[t;x]))
Proof
Definitions occuring in Statement : 
geo-convex: IsConvex(x.P[x])
, 
basic-geometry: BasicGeometry
, 
geo-point: Point
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
geo-convex: IsConvex(x.P[x])
Lemmas referenced : 
geo-point_wf, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
geo-between_wf, 
all_wf
Rules used in proof : 
independent_functionElimination, 
dependent_functionElimination, 
universeEquality, 
functionEquality, 
because_Cache, 
independent_isectElimination, 
instantiate, 
hypothesis, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
cumulativity, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
hypothesisEquality, 
lambdaFormation, 
isect_memberFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}[g:BasicGeometry].  \mforall{}[T:Type].
    \mforall{}P:T  {}\mrightarrow{}  Point  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}t:T.  IsConvex(x.P[t;x]))  {}\mRightarrow{}  IsConvex(x.\mforall{}t:T.  P[t;x]))
Date html generated:
2017_10_02-PM-06_49_00
Last ObjectModification:
2017_08_06-PM-07_28_41
Theory : euclidean!plane!geometry
Home
Index