Nuprl Lemma : geo-convex-intersection

[g:BasicGeometry]. ∀[T:Type].  ∀P:T ⟶ Point ⟶ ℙ((∀t:T. IsConvex(x.P[t;x]))  IsConvex(x.∀t:T. P[t;x]))


Proof




Definitions occuring in Statement :  geo-convex: IsConvex(x.P[x]) basic-geometry: BasicGeometry geo-point: Point uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uimplies: supposing a guard: {T} subtype_rel: A ⊆B so_apply: x[s] so_apply: x[s1;s2] so_lambda: λ2x.t[x] prop: member: t ∈ T implies:  Q all: x:A. B[x] uall: [x:A]. B[x] geo-convex: IsConvex(x.P[x])
Lemmas referenced :  geo-point_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype geo-between_wf all_wf
Rules used in proof :  independent_functionElimination dependent_functionElimination universeEquality functionEquality because_Cache independent_isectElimination instantiate hypothesis functionExtensionality applyEquality lambdaEquality cumulativity thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut hypothesisEquality lambdaFormation isect_memberFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}[g:BasicGeometry].  \mforall{}[T:Type].
    \mforall{}P:T  {}\mrightarrow{}  Point  {}\mrightarrow{}  \mBbbP{}.  ((\mforall{}t:T.  IsConvex(x.P[t;x]))  {}\mRightarrow{}  IsConvex(x.\mforall{}t:T.  P[t;x]))



Date html generated: 2017_10_02-PM-06_49_00
Last ObjectModification: 2017_08_06-PM-07_28_41

Theory : euclidean!plane!geometry


Home Index