Step
*
1
1
1
1
1
2
1
of Lemma
geo-intersect-iff
1. e : EuclideanPlane
2. y1 : Point
3. x1 : Point
4. l2 : y1 ≠ x1
5. x : Point
6. y : Point
7. p2 : x ≠ y
8. a : Point
9. b : Point
10. a leftof y1x1
11. b leftof x1y1
12. v : Point
13. Colinear(a;x;y) ∧ Colinear(b;x;y) ∧ Colinear(y1;x1;v) ∧ a_v_b
14. x1 ≠ v
⊢ ∃c,d:Point. (Colinear(y1;x1;c) ∧ Colinear(y1;x1;d) ∧ c-v-d ∧ a leftof cd ∧ b leftof dc)
BY
{ (gSymmetricPoint ⌜v⌝ ⌜x1⌝ `z'⋅ THEN (Assert a # x1z BY Auto) THEN D -1) }
1
1. e : EuclideanPlane
2. y1 : Point
3. x1 : Point
4. l2 : y1 ≠ x1
5. x : Point
6. y : Point
7. p2 : x ≠ y
8. a : Point
9. b : Point
10. a leftof y1x1
11. b leftof x1y1
12. v : Point
13. Colinear(a;x;y) ∧ Colinear(b;x;y) ∧ Colinear(y1;x1;v) ∧ a_v_b
14. x1 ≠ v
15. z : Point
16. x1=v=z
17. a leftof x1z
⊢ ∃c,d:Point. (Colinear(y1;x1;c) ∧ Colinear(y1;x1;d) ∧ c-v-d ∧ a leftof cd ∧ b leftof dc)
2
1. e : EuclideanPlane
2. y1 : Point
3. x1 : Point
4. l2 : y1 ≠ x1
5. x : Point
6. y : Point
7. p2 : x ≠ y
8. a : Point
9. b : Point
10. a leftof y1x1
11. b leftof x1y1
12. v : Point
13. Colinear(a;x;y) ∧ Colinear(b;x;y) ∧ Colinear(y1;x1;v) ∧ a_v_b
14. x1 ≠ v
15. z : Point
16. x1=v=z
17. a leftof zx1
⊢ ∃c,d:Point. (Colinear(y1;x1;c) ∧ Colinear(y1;x1;d) ∧ c-v-d ∧ a leftof cd ∧ b leftof dc)
Latex:
Latex:
1. e : EuclideanPlane
2. y1 : Point
3. x1 : Point
4. l2 : y1 \mneq{} x1
5. x : Point
6. y : Point
7. p2 : x \mneq{} y
8. a : Point
9. b : Point
10. a leftof y1x1
11. b leftof x1y1
12. v : Point
13. Colinear(a;x;y) \mwedge{} Colinear(b;x;y) \mwedge{} Colinear(y1;x1;v) \mwedge{} a\_v\_b
14. x1 \mneq{} v
\mvdash{} \mexists{}c,d:Point. (Colinear(y1;x1;c) \mwedge{} Colinear(y1;x1;d) \mwedge{} c-v-d \mwedge{} a leftof cd \mwedge{} b leftof dc)
By
Latex:
(gSymmetricPoint \mkleeneopen{}v\mkleeneclose{} \mkleeneopen{}x1\mkleeneclose{} `z'\mcdot{} THEN (Assert a \# x1z BY Auto) THEN D -1)
Home
Index