Nuprl Lemma : geo-intersect-iff

e:EuclideanPlane. ∀P,L:LINE.
  (P \/ ⇐⇒ ∃a,b,c,d,v:Point. (a-v-b ∧ c-v-d ∧ P ∧ P ∧ L ∧ L ∧ leftof cd ∧ leftof dc))


Proof




Definitions occuring in Statement :  geo-intersect: \/ M geo-incident: L geoline: LINE euclidean-plane: EuclideanPlane geo-strict-between: a-b-c geo-left: leftof bc geo-point: Point all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: rev_implies:  Q exists: x:A. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a geo-intersect: \/ M so_lambda: λ2x.t[x] so_apply: x[s] geo-line: Line pi2: snd(t) pi1: fst(t) euclidean-plane: EuclideanPlane sq_stable: SqStable(P) cand: c∧ B squash: T geo-incident: L true: True or: P ∨ Q basic-geometry: BasicGeometry geo-midpoint: a=m=b oriented-plane: OrientedPlane append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False select: L[n] cons: [a b] subtract: m geo-lsep: bc geo-strict-between: a-b-c basic-geometry-: BasicGeometry- uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) respects-equality: respects-equality(S;T)
Lemmas referenced :  geo-intersect_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-strict-between_wf geo-incident_wf geo-left_wf geoline_wf exists_wf and_wf geoline-subtype1 geo-SS_wf sq_stable__and geo-colinear_wf geo-between_wf sq_stable__colinear sq_stable__geo-between geo-sep_wf trivial-equal geo-sep-or symmetric-point-construction geo-sep-sym colinear-lsep-cycle lsep-all-sym2 geo-between-sep oriented-colinear-append cons_wf nil_wf cons_member l_member_wf geo-colinear-is-colinear-set geo-between-implies-colinear list_ind_cons_lemma istype-void list_ind_nil_lemma length_of_cons_lemma length_of_nil_lemma decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than lsep-all-sym geo-colinear-same geo-congruent-symmetry geo-congruent-sep left-implies-sep left-between not-lsep-iff-colinear geo-between-symmetry iff_weakening_uiff pi1_wf_top pi2_wf subtype_rel_product top_wf geo-incident-line geo-strict-between-implies-colinear lsep-colinear-sep geo-lsep_wf geo-strict-between-sep1 geo-line-eq-geoline subtype-respects-equality geo-line_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule productIsType applyEquality instantiate independent_isectElimination because_Cache inhabitedIsType productElimination promote_hyp equalitySymmetry rename hyp_replacement applyLambdaEquality lambdaEquality_alt setElimination dependent_set_memberEquality_alt equalityIstype equalityTransitivity dependent_functionElimination independent_functionElimination isect_memberEquality_alt productEquality imageMemberEquality baseClosed imageElimination dependent_pairEquality_alt independent_pairEquality natural_numberEquality unionElimination dependent_pairFormation_alt inlFormation_alt inrFormation_alt voidElimination approximateComputation functionIsType setIsType

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}P,L:LINE.
    (P  \mbackslash{}/  L
    \mLeftarrow{}{}\mRightarrow{}  \mexists{}a,b,c,d,v:Point.  (a-v-b  \mwedge{}  c-v-d  \mwedge{}  a  I  P  \mwedge{}  b  I  P  \mwedge{}  c  I  L  \mwedge{}  d  I  L  \mwedge{}  a  leftof  cd  \mwedge{}  b  leftof  dc))



Date html generated: 2019_10_16-PM-02_40_37
Last ObjectModification: 2018_12_11-PM-11_05_21

Theory : euclidean!plane!geometry


Home Index