Nuprl Lemma : geo-incident-line

[e:EuclideanPlane]. ∀[p:Point]. ∀[l:Line].  uiff(p l;Colinear(p;fst(l);fst(snd(l))))


Proof




Definitions occuring in Statement :  geo-incident: L geo-line: Line euclidean-plane: EuclideanPlane geo-colinear: Colinear(a;b;c) geo-point: Point uiff: uiff(P;Q) uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t)
Definitions unfolded in proof :  uall: [x:A]. B[x] geoline: LINE member: t ∈ T all: x:A. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uiff: uiff(P;Q) and: P ∧ Q geo-colinear: Colinear(a;b;c) not: ¬A implies:  Q false: False geo-line: Line pi1: fst(t) pi2: snd(t) prop: geo-incident: L quotient: x,y:A//B[x; y] top: Top sq_stable: SqStable(P) squash: T oriented-plane: OrientedPlane exists: x:A. B[x] cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) less_than: a < b true: True select: L[n] cons: [a b] subtract: m
Lemmas referenced :  subtype_quotient geo-line_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-line-eq_wf geo-line-eq-equiv not_wf geo-between_wf geo-incident_wf equal_wf geoline_wf geo-colinear_wf geo-point_wf trivial-equal member_wf sq_stable__colinear pi1_wf_top geo-line-eq-to-col oriented-colinear-append cons_wf nil_wf cons_member l_member_wf geo-sep_wf exists_wf geo-colinear-is-colinear-set list_ind_cons_lemma list_ind_nil_lemma length_of_cons_lemma length_of_nil_lemma false_wf lelt_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination lambdaEquality because_Cache independent_pairFormation productEquality productElimination lambdaFormation rename voidElimination independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry independent_functionElimination pertypeElimination voidEquality imageMemberEquality baseClosed imageElimination dependent_pairFormation inrFormation inlFormation dependent_set_memberEquality natural_numberEquality

Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[p:Point].  \mforall{}[l:Line].    uiff(p  I  l;Colinear(p;fst(l);fst(snd(l))))



Date html generated: 2018_05_22-PM-01_03_42
Last ObjectModification: 2018_05_10-PM-05_17_54

Theory : euclidean!plane!geometry


Home Index