Nuprl Lemma : geo-incident-line
∀[e:EuclideanPlane]. ∀[p:Point]. ∀[l:Line].  uiff(p I l;Colinear(p;fst(l);fst(snd(l))))
Proof
Definitions occuring in Statement : 
geo-incident: p I L
, 
geo-line: Line
, 
euclidean-plane: EuclideanPlane
, 
geo-colinear: Colinear(a;b;c)
, 
geo-point: Point
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
geoline: LINE
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
geo-colinear: Colinear(a;b;c)
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
geo-line: Line
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
prop: ℙ
, 
geo-incident: p I L
, 
quotient: x,y:A//B[x; y]
, 
top: Top
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
oriented-plane: OrientedPlane
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
l_all: (∀x∈L.P[x])
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
less_than: a < b
, 
true: True
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
Lemmas referenced : 
subtype_quotient, 
geo-line_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-line-eq_wf, 
geo-line-eq-equiv, 
not_wf, 
geo-between_wf, 
geo-incident_wf, 
equal_wf, 
geoline_wf, 
geo-colinear_wf, 
geo-point_wf, 
trivial-equal, 
member_wf, 
sq_stable__colinear, 
pi1_wf_top, 
geo-line-eq-to-col, 
oriented-colinear-append, 
cons_wf, 
nil_wf, 
cons_member, 
l_member_wf, 
geo-sep_wf, 
exists_wf, 
geo-colinear-is-colinear-set, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
length_of_cons_lemma, 
length_of_nil_lemma, 
false_wf, 
lelt_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
sqequalRule, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
lambdaEquality, 
because_Cache, 
independent_pairFormation, 
productEquality, 
productElimination, 
lambdaFormation, 
rename, 
voidElimination, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
pertypeElimination, 
voidEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_pairFormation, 
inrFormation, 
inlFormation, 
dependent_set_memberEquality, 
natural_numberEquality
Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[p:Point].  \mforall{}[l:Line].    uiff(p  I  l;Colinear(p;fst(l);fst(snd(l))))
Date html generated:
2018_05_22-PM-01_03_42
Last ObjectModification:
2018_05_10-PM-05_17_54
Theory : euclidean!plane!geometry
Home
Index