Nuprl Lemma : geo-incident_wf
∀[e:EuclideanPlane]. ∀[p:Point]. ∀[l:LINE].  (p I l ∈ ℙ)
Proof
Definitions occuring in Statement : 
geo-incident: p I L
, 
geoline: LINE
, 
euclidean-plane: EuclideanPlane
, 
geo-point: Point
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
geo-incident: p I L
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
geo-line: Line
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
geo-line_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
equal_wf, 
geoline_wf, 
geoline-subtype1, 
geo-colinear_wf, 
geo-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
lambdaEquality, 
functionEquality, 
because_Cache, 
productElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[p:Point].  \mforall{}[l:LINE].    (p  I  l  \mmember{}  \mBbbP{})
Date html generated:
2018_05_22-PM-01_03_31
Last ObjectModification:
2018_05_11-PM-01_16_37
Theory : euclidean!plane!geometry
Home
Index