Nuprl Lemma : geo-incident_wf

[e:EuclideanPlane]. ∀[p:Point]. ∀[l:LINE].  (p l ∈ ℙ)


Proof




Definitions occuring in Statement :  geo-incident: L geoline: LINE euclidean-plane: EuclideanPlane geo-point: Point uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T geo-incident: L all: x:A. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] implies:  Q prop: geo-line: Line pi1: fst(t) pi2: snd(t) so_apply: x[s]
Lemmas referenced :  all_wf geo-line_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf equal_wf geoline_wf geoline-subtype1 geo-colinear_wf geo-point_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination lambdaEquality functionEquality because_Cache productElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[p:Point].  \mforall{}[l:LINE].    (p  I  l  \mmember{}  \mBbbP{})



Date html generated: 2018_05_22-PM-01_03_31
Last ObjectModification: 2018_05_11-PM-01_16_37

Theory : euclidean!plane!geometry


Home Index