Nuprl Lemma : geo-line-eq-to-col

g:EuclideanPlane. ∀l,m:Line.
  (l ≡  {Colinear(fst(l);fst(snd(l));fst(m)) ∧ Colinear(fst(l);fst(snd(l));fst(snd(m)))})


Proof




Definitions occuring in Statement :  geo-line-eq: l ≡ m geo-line: Line euclidean-plane: EuclideanPlane geo-colinear: Colinear(a;b;c) guard: {T} pi1: fst(t) pi2: snd(t) all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q all: x:A. B[x] pi2: snd(t) pi1: fst(t) geo-line: Line uimplies: supposing a subtype_rel: A ⊆B and: P ∧ Q guard: {T} geo-colinear: Colinear(a;b;c) stable: Stable{P} not: ¬A or: P ∨ Q false: False iff: ⇐⇒ Q basic-geometry: BasicGeometry cand: c∧ B exists: x:A. B[x] geo-line-sep: geo-line-sep(g;l;m) geo-line-eq: l ≡ m oriented-plane: OrientedPlane rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) less_than: a < b squash: T true: True select: L[n] cons: [a b] subtract: m
Lemmas referenced :  euclidean-plane_wf geo-line_wf geo-line-eq_wf geo-lsep_wf or_wf false_wf geo-primitives_wf euclidean-plane-structure_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-between_wf not_wf stable__not minimal-double-negation-hyp-elim not-lsep-iff-colinear minimal-not-not-excluded-middle geo-colinear_wf geo-colinear-same oriented-colinear-append cons_wf geo-point_wf nil_wf cons_member l_member_wf equal_wf geo-sep_wf exists_wf geo-colinear-is-colinear-set list_ind_cons_lemma list_ind_nil_lemma length_of_cons_lemma length_of_nil_lemma lelt_wf
Rules used in proof :  dependent_functionElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution sqequalRule productElimination functionEquality because_Cache independent_isectElimination instantiate applyEquality productEquality independent_pairFormation independent_functionElimination unionElimination voidElimination dependent_pairFormation inrFormation inlFormation lambdaEquality isect_memberEquality voidEquality dependent_set_memberEquality natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}l,m:Line.
    (l  \mequiv{}  m  {}\mRightarrow{}  \{Colinear(fst(l);fst(snd(l));fst(m))  \mwedge{}  Colinear(fst(l);fst(snd(l));fst(snd(m)))\})



Date html generated: 2018_05_22-PM-01_01_26
Last ObjectModification: 2018_01_17-PM-01_00_00

Theory : euclidean!plane!geometry


Home Index