Nuprl Lemma : geo-intersect_wf
∀[e:EuclideanPlane]. ∀[p,l:LINE].  (p \/ l ∈ ℙ)
Proof
Definitions occuring in Statement : 
geo-intersect: L \/ M
, 
geoline: LINE
, 
euclidean-plane: EuclideanPlane
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
geoline: LINE
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
geo-intersect: L \/ M
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
geo-line: Line
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
subtype_quotient, 
geo-line_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-line-eq_wf, 
geo-line-eq-equiv, 
exists_wf, 
equal_wf, 
geoline_wf, 
geo-point_wf, 
geo-incident_wf, 
geo-left_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
lambdaEquality, 
because_Cache, 
productEquality, 
setEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
setElimination, 
rename, 
productElimination, 
axiomEquality, 
isect_memberEquality
Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[p,l:LINE].    (p  \mbackslash{}/  l  \mmember{}  \mBbbP{})
Date html generated:
2018_05_22-PM-01_05_12
Last ObjectModification:
2018_05_10-PM-04_45_39
Theory : euclidean!plane!geometry
Home
Index