Nuprl Lemma : geo-intersect_wf
∀[e:EuclideanPlane]. ∀[p,l:LINE].  (p \/ l ∈ ℙ)
Proof
Definitions occuring in Statement : 
geo-intersect: L \/ M, 
geoline: LINE, 
euclidean-plane: EuclideanPlane, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
geoline: LINE, 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
geo-intersect: L \/ M, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
and: P ∧ Q, 
geo-line: Line, 
pi1: fst(t), 
pi2: snd(t), 
so_apply: x[s], 
exists: ∃x:A. B[x]
Lemmas referenced : 
subtype_quotient, 
geo-line_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-line-eq_wf, 
geo-line-eq-equiv, 
exists_wf, 
equal_wf, 
geoline_wf, 
geo-point_wf, 
geo-incident_wf, 
geo-left_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
lambdaEquality, 
because_Cache, 
productEquality, 
setEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
setElimination, 
rename, 
productElimination, 
axiomEquality, 
isect_memberEquality
Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[p,l:LINE].    (p  \mbackslash{}/  l  \mmember{}  \mBbbP{})
Date html generated:
2018_05_22-PM-01_05_12
Last ObjectModification:
2018_05_10-PM-04_45_39
Theory : euclidean!plane!geometry
Home
Index