Nuprl Lemma : geo-line-eq-geoline
∀[e:EuclideanPlane]. ∀[P:LINE]. ∀[l:Line].  uiff(fst(l) I P ∧ fst(snd(l)) I P;l = P ∈ LINE)
Proof
Definitions occuring in Statement : 
geo-incident: p I L
, 
geoline: LINE
, 
geo-line: Line
, 
euclidean-plane: EuclideanPlane
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
and: P ∧ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
prop: ℙ
, 
geo-line: Line
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
geo-incident: p I L
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
geo-colinear: Colinear(a;b;c)
, 
not: ¬A
, 
false: False
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
geoline: LINE
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
quotient: x,y:A//B[x; y]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
squash: ↓T
, 
true: True
, 
cand: A c∧ B
, 
basic-geometry: BasicGeometry
Lemmas referenced : 
geo-incident_wf, 
not_wf, 
geo-between_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
equal_wf, 
geoline_wf, 
subtype_quotient, 
geo-line-eq_wf, 
geo-line_wf, 
geo-line-eq-equiv, 
quotient-member-eq, 
equal-wf-base, 
geo-line-eq_functionality, 
geo-line-eq_weakening, 
geo-line-eq_inversion, 
geo-incident-line, 
pi1_wf_top, 
geo-point_wf, 
geo-colinear_wf, 
geo-colinear-line-eq2, 
and_wf, 
subtype_rel_product, 
geo-sep_wf, 
top_wf, 
squash_wf, 
true_wf, 
geo-colinear-same
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
independent_pairFormation, 
productEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
sqequalRule, 
hypothesis, 
because_Cache, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
voidElimination, 
applyEquality, 
instantiate, 
independent_isectElimination, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
lambdaFormation, 
addLevel, 
impliesFunctionality, 
isect_memberEquality, 
voidEquality, 
functionEquality, 
hyp_replacement, 
dependent_set_memberEquality, 
applyLambdaEquality, 
setElimination, 
rename, 
levelHypothesis, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[P:LINE].  \mforall{}[l:Line].    uiff(fst(l)  I  P  \mwedge{}  fst(snd(l))  I  P;l  =  P)
Date html generated:
2018_05_22-PM-01_03_54
Last ObjectModification:
2018_05_10-PM-05_50_00
Theory : euclidean!plane!geometry
Home
Index