Nuprl Lemma : geo-colinear-line-eq2

e:EuclideanPlane. ∀l1,l2:Line.
  (Colinear(fst(l1);fst(l2);fst(snd(l2)))  Colinear(fst(snd(l1));fst(l2);fst(snd(l2)))  l1 ≡ l2)


Proof




Definitions occuring in Statement :  geo-line-eq: l ≡ m geo-line: Line euclidean-plane: EuclideanPlane geo-colinear: Colinear(a;b;c) pi1: fst(t) pi2: snd(t) all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uimplies: supposing a guard: {T} or: P ∨ Q prop: pi2: snd(t) pi1: fst(t) top: Top geo-line: Line subtype_rel: A ⊆B uall: [x:A]. B[x] euclidean-plane: EuclideanPlane member: t ∈ T geo-line-sep: geo-line-sep(g;l;m) not: ¬A geo-line-eq: l ≡ m implies:  Q all: x:A. B[x] so_apply: x[s1;s2;s3] so_lambda: so_lambda(x,y,z.t[x; y; z]) append: as bs so_apply: x[s] so_lambda: λ2x.t[x] rev_implies:  Q iff: ⇐⇒ Q oriented-plane: OrientedPlane subtract: m cons: [a b] select: L[n] true: True squash: T less_than: a < b false: False less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} l_all: (∀x∈L.P[x]) geo-colinear-set: geo-colinear-set(e; L) cand: c∧ B and: P ∧ Q exists: x:A. B[x] geo-colinear: Colinear(a;b;c)
Lemmas referenced :  geo-line_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-colinear_wf geo-line-sep_wf geo-sep_wf geo-point_wf pi1_wf_top geo-sep-or list_ind_nil_lemma list_ind_cons_lemma exists_wf equal_wf l_member_wf cons_member lsep-implies-sep nil_wf cons_wf oriented-colinear-append lelt_wf false_wf length_of_nil_lemma length_of_cons_lemma geo-colinear-is-colinear-set geo-sep-sym lsep-all-sym colinear-lsep-cycle lsep-not-between geo-lsep_wf true_wf squash_wf top_wf subtype_rel_product and_wf colinear-lsep'
Rules used in proof :  independent_isectElimination instantiate unionElimination dependent_set_memberEquality voidEquality voidElimination isect_memberEquality independent_pairEquality productElimination sqequalRule because_Cache applyEquality isectElimination hypothesis hypothesisEquality rename setElimination thin dependent_functionElimination extract_by_obid introduction cut sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution lambdaEquality productEquality inlFormation inrFormation dependent_pairFormation baseClosed imageMemberEquality independent_pairFormation natural_numberEquality independent_functionElimination levelHypothesis imageElimination applyLambdaEquality equalityTransitivity equalitySymmetry hyp_replacement addLevel

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}l1,l2:Line.
    (Colinear(fst(l1);fst(l2);fst(snd(l2)))  {}\mRightarrow{}  Colinear(fst(snd(l1));fst(l2);fst(snd(l2)))  {}\mRightarrow{}  l1  \mequiv{}  l2)



Date html generated: 2018_05_22-PM-01_01_14
Last ObjectModification: 2018_01_17-PM-00_01_56

Theory : euclidean!plane!geometry


Home Index