Nuprl Lemma : geo-line-eq_functionality
∀e:EuclideanPlane. ∀l,m,l1,m1:Line.  (l ≡ l1 
⇒ m ≡ m1 
⇒ (l ≡ m 
⇐⇒ l1 ≡ m1))
Proof
Definitions occuring in Statement : 
geo-line-eq: l ≡ m
, 
geo-line: Line
, 
euclidean-plane: EuclideanPlane
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
rev_implies: P 
⇐ Q
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
geo-line-eq_inversion, 
geo-line-eq_transitivity, 
geo-line_wf, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
subtype_rel_transitivity, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-line-eq_wf
Rules used in proof : 
independent_functionElimination, 
dependent_functionElimination, 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}l,m,l1,m1:Line.    (l  \mequiv{}  l1  {}\mRightarrow{}  m  \mequiv{}  m1  {}\mRightarrow{}  (l  \mequiv{}  m  \mLeftarrow{}{}\mRightarrow{}  l1  \mequiv{}  m1))
Date html generated:
2018_05_22-PM-01_02_22
Last ObjectModification:
2018_05_21-AM-01_33_08
Theory : euclidean!plane!geometry
Home
Index