Nuprl Lemma : geo-parallel-not-intersect

e:EuclideanPlane. ∀a,b,c,d:Point.  (geo-parallel-points(e;a;b;c;d)  ab \/ cd))


Proof




Definitions occuring in Statement :  geo-parallel-points: geo-parallel-points(e;a;b;c;d) geo-intersect-points: ab \/ cd euclidean-plane: EuclideanPlane geo-point: Point all: x:A. B[x] not: ¬A implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q not: ¬A false: False member: t ∈ T subtype_rel: A ⊆B uall: [x:A]. B[x] guard: {T} uimplies: supposing a prop: geo-intersect-points: ab \/ cd and: P ∧ Q geo-parallel-points: geo-parallel-points(e;a;b;c;d)
Lemmas referenced :  geo-intersect-points_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-parallel-points_wf geo-point_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin universeIsType introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination hypothesisEquality applyEquality hypothesis instantiate isectElimination independent_isectElimination sqequalRule independent_functionElimination voidElimination because_Cache inhabitedIsType productElimination

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d:Point.    (geo-parallel-points(e;a;b;c;d)  {}\mRightarrow{}  (\mneg{}ab  \mbackslash{}/  cd))



Date html generated: 2019_10_16-PM-01_46_15
Last ObjectModification: 2019_08_19-PM-03_38_11

Theory : euclidean!plane!geometry


Home Index