Nuprl Lemma : geo-parallel-points-implies
∀e:EuclideanPlane. ∀a,b,x,y:Point.
  (geo-parallel-points(e;a;b;x;y)
  
⇒ (a ≠ b ∧ x ≠ y)
  
⇒ (∀x1,y1:{z:Point| Colinear(z;a;b)} .  (x1 leftof xy 
⇒ (¬y1 leftof yx))))
Proof
Definitions occuring in Statement : 
geo-parallel-points: geo-parallel-points(e;a;b;c;d)
, 
euclidean-plane: EuclideanPlane
, 
geo-colinear: Colinear(a;b;c)
, 
geo-left: a leftof bc
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
geo-parallel-points: geo-parallel-points(e;a;b;c;d)
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
Lemmas referenced : 
geo-left_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-colinear_wf, 
geo-sep_wf, 
geo-parallel-points_wf, 
geo-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
sqequalHypSubstitution, 
productElimination, 
hypothesis, 
independent_functionElimination, 
voidElimination, 
universeIsType, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
setElimination, 
rename, 
because_Cache, 
inhabitedIsType, 
setIsType, 
productIsType, 
dependent_functionElimination, 
dependent_pairFormation_alt, 
independent_pairFormation
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,x,y:Point.
    (geo-parallel-points(e;a;b;x;y)
    {}\mRightarrow{}  (a  \mneq{}  b  \mwedge{}  x  \mneq{}  y)
    {}\mRightarrow{}  (\mforall{}x1,y1:\{z:Point|  Colinear(z;a;b)\}  .    (x1  leftof  xy  {}\mRightarrow{}  (\mneg{}y1  leftof  yx))))
Date html generated:
2019_10_16-PM-01_46_30
Last ObjectModification:
2019_08_19-PM-03_02_51
Theory : euclidean!plane!geometry
Home
Index