Nuprl Lemma : geo-seg-length-test
∀e:BasicGeometry. ∀[a,b,c,d,x,y:Point].  (ba ≅ xy) supposing (dc ≅ yx and ab ≅ cd)
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry
, 
geo-congruent: ab ≅ cd
, 
geo-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
geo-point_wf, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
geo-congruent_wf, 
geo-length-flip, 
geo-congruent-iff-length
Rules used in proof : 
sqequalRule, 
instantiate, 
applyEquality, 
equalitySymmetry, 
equalityTransitivity, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
productElimination, 
isectElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
isect_memberFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}e:BasicGeometry.  \mforall{}[a,b,c,d,x,y:Point].    (ba  \00D0  xy)  supposing  (dc  \00D0  yx  and  ab  \00D0  cd)
Date html generated:
2017_10_02-PM-06_20_56
Last ObjectModification:
2017_08_05-PM-04_15_27
Theory : euclidean!plane!geometry
Home
Index