Nuprl Lemma : geo-seg-length-test

e:BasicGeometry. ∀[a,b,c,d,x,y:Point].  (ba ≅ xy) supposing (dc ≅ yx and ab ≅ cd)


Proof




Definitions occuring in Statement :  basic-geometry: BasicGeometry geo-congruent: ab ≅ cd geo-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  guard: {T} subtype_rel: A ⊆B prop: and: P ∧ Q uiff: uiff(P;Q) member: t ∈ T uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Lemmas referenced :  geo-point_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype geo-congruent_wf geo-length-flip geo-congruent-iff-length
Rules used in proof :  sqequalRule instantiate applyEquality equalitySymmetry equalityTransitivity hypothesis because_Cache independent_isectElimination productElimination isectElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut isect_memberFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:BasicGeometry.  \mforall{}[a,b,c,d,x,y:Point].    (ba  \00D0  xy)  supposing  (dc  \00D0  yx  and  ab  \00D0  cd)



Date html generated: 2017_10_02-PM-06_20_56
Last ObjectModification: 2017_08_05-PM-04_15_27

Theory : euclidean!plane!geometry


Home Index