Step
*
1
1
1
1
of Lemma
lsep-inner-pasch-strict
1. e : OrientedPlane
2. a : Point
3. b : Point
4. c : {c:Point| c # ab}
5. p : {p:Point| a-p-c}
6. q : {q:Point| b-q-c}
7. x : Point
8. b_x_p
9. a_x_q
10. c # ab
11. a-p-c
12. b-q-c
13. c # aq
14. b # aq
15. c # pb
16. a # pb
17. x # ab
18. x # bc
⊢ ∃x:{Point| (b-x-p ∧ a-x-q)}
BY
{ (Assert x # ca BY
((InstLemma `geo-sep-or` [⌜e⌝;⌜c⌝;⌜a⌝;⌜x⌝]⋅ THENA Auto) THEN D -1 THEN Auto)) }
1
1. e : OrientedPlane
2. a : Point
3. b : Point
4. c : {c:Point| c # ab}
5. p : {p:Point| a-p-c}
6. q : {q:Point| b-q-c}
7. x : Point
8. b_x_p
9. a_x_q
10. c # ab
11. a-p-c
12. b-q-c
13. c # aq
14. b # aq
15. c # pb
16. a # pb
17. x # ab
18. x # bc
19. x # ca
⊢ ∃x:{Point| (b-x-p ∧ a-x-q)}
Latex:
Latex:
1. e : OrientedPlane
2. a : Point
3. b : Point
4. c : \{c:Point| c \# ab\}
5. p : \{p:Point| a-p-c\}
6. q : \{q:Point| b-q-c\}
7. x : Point
8. b\_x\_p
9. a\_x\_q
10. c \# ab
11. a-p-c
12. b-q-c
13. c \# aq
14. b \# aq
15. c \# pb
16. a \# pb
17. x \# ab
18. x \# bc
\mvdash{} \mexists{}x:\{Point| (b-x-p \mwedge{} a-x-q)\}
By
Latex:
(Assert x \# ca BY
((InstLemma `geo-sep-or` [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{}]\mcdot{} THENA Auto) THEN D -1 THEN Auto))
Home
Index