Nuprl Lemma : not-lsep-if-colinear

g:EuclideanPlane. ∀a,b,c:Point.  (a bc  Colinear(a;b;c)  False)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-lsep: bc geo-colinear: Colinear(a;b;c) geo-point: Point all: x:A. B[x] implies:  Q false: False
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q false: False member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: rev_implies:  Q not: ¬A
Lemmas referenced :  not-lsep-iff-colinear geo-colinear_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-lsep_wf geo-point_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination hypothesis universeIsType isectElimination applyEquality instantiate independent_isectElimination sqequalRule because_Cache inhabitedIsType independent_functionElimination

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c:Point.    (a  \#  bc  {}\mRightarrow{}  Colinear(a;b;c)  {}\mRightarrow{}  False)



Date html generated: 2019_10_16-PM-01_14_13
Last ObjectModification: 2019_08_08-PM-02_46_49

Theory : euclidean!plane!geometry


Home Index