Nuprl Lemma : pgeo-non-trivial-dual-ext

g:ProjectivePlane. (∃l:Line [l ≡ l])


Proof




Definitions occuring in Statement :  projective-plane: ProjectivePlane pgeo-leq: a ≡ b pgeo-line: Line all: x:A. B[x] sq_exists: x:A [B[x]]
Definitions unfolded in proof :  member: t ∈ T point-exists-axiom: point-exists-axiom(g) record-select: r.x pgeo-three-lines: pgeo-three-line-axiom(p) pi1: fst(t) pgeo-non-trivial-dual pgeo-non-trivial pgeo-three-lines-axiom
Lemmas referenced :  pgeo-non-trivial-dual pgeo-non-trivial pgeo-three-lines-axiom
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}g:ProjectivePlane.  (\mexists{}l:Line  [l  \mequiv{}  l])



Date html generated: 2019_10_16-PM-02_12_38
Last ObjectModification: 2019_08_27-AM-08_39_14

Theory : euclidean!plane!geometry


Home Index