Nuprl Lemma : pgeo-non-trivial
∀g:ProjectivePlaneStructureComplete. ∃p:Point. p ≡ p
Proof
Definitions occuring in Statement : 
projective-plane-structure-complete: ProjectivePlaneStructureComplete
, 
pgeo-peq: a ≡ b
, 
pgeo-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
projective-plane-structure-complete_wf, 
point-exists-axiom_wf
Rules used in proof : 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}g:ProjectivePlaneStructureComplete.  \mexists{}p:Point.  p  \mequiv{}  p
Date html generated:
2018_05_22-PM-00_33_07
Last ObjectModification:
2017_11_27-PM-04_18_32
Theory : euclidean!plane!geometry
Home
Index