Nuprl Lemma : pgeo-three-lines-axiom
∀g:ProjectivePlaneStructure. ∀p:Point.  ∃l,m,n:Line. (p I l ∧ p I m ∧ p I n ∧ l ≠ m ∧ m ≠ n ∧ n ≠ l)
Proof
Definitions occuring in Statement : 
projective-plane-structure: ProjectivePlaneStructure
, 
pgeo-lsep: l ≠ m
, 
pgeo-incident: a I b
, 
pgeo-line: Line
, 
pgeo-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
Definitions unfolded in proof : 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
projective-plane-structure_wf, 
projective-plane-structure_subtype, 
pgeo-point_wf, 
pgeo-three-lines_wf
Rules used in proof : 
sqequalRule, 
applyEquality, 
isectElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}g:ProjectivePlaneStructure.  \mforall{}p:Point.    \mexists{}l,m,n:Line.  (p  I  l  \mwedge{}  p  I  m  \mwedge{}  p  I  n  \mwedge{}  l  \mneq{}  m  \mwedge{}  m  \mneq{}  n  \mwedge{}  n  \mneq{}  l)
Date html generated:
2018_05_22-PM-00_32_18
Last ObjectModification:
2017_11_27-PM-04_18_48
Theory : euclidean!plane!geometry
Home
Index