Nuprl Lemma : pgeo-three-lines-axiom

g:ProjectivePlaneStructure. ∀p:Point.  ∃l,m,n:Line. (p l ∧ m ∧ n ∧ l ≠ m ∧ m ≠ n ∧ n ≠ l)


Proof




Definitions occuring in Statement :  projective-plane-structure: ProjectivePlaneStructure pgeo-lsep: l ≠ m pgeo-incident: b pgeo-line: Line pgeo-point: Point all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q
Definitions unfolded in proof :  subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  projective-plane-structure_wf projective-plane-structure_subtype pgeo-point_wf pgeo-three-lines_wf
Rules used in proof :  sqequalRule applyEquality isectElimination hypothesis hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid cut introduction lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:ProjectivePlaneStructure.  \mforall{}p:Point.    \mexists{}l,m,n:Line.  (p  I  l  \mwedge{}  p  I  m  \mwedge{}  p  I  n  \mwedge{}  l  \mneq{}  m  \mwedge{}  m  \mneq{}  n  \mwedge{}  n  \mneq{}  l)



Date html generated: 2018_05_22-PM-00_32_18
Last ObjectModification: 2017_11_27-PM-04_18_48

Theory : euclidean!plane!geometry


Home Index