Nuprl Lemma : pgeo-three-lines_wf

g:ProjectivePlaneStructure. ∀a:Point.
  (pgeo-three-line-axiom(a) ∈ ∃l,m,n:Line. (a l ∧ m ∧ n ∧ l ≠ m ∧ m ≠ n ∧ n ≠ l))


Proof




Definitions occuring in Statement :  pgeo-three-lines: pgeo-three-line-axiom(p) projective-plane-structure: ProjectivePlaneStructure pgeo-lsep: l ≠ m pgeo-incident: b pgeo-line: Line pgeo-point: Point all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T pgeo-three-lines: pgeo-three-line-axiom(p) projective-plane-structure: ProjectivePlaneStructure record+: record+ record-select: r.x subtype_rel: A ⊆B eq_atom: =a y ifthenelse: if then else fi  btrue: tt uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] prop: or: P ∨ Q implies:  Q and: P ∧ Q exists: x:A. B[x]
Lemmas referenced :  subtype_rel_self all_wf pgeo-line_wf pgeo-point_wf sq_stable_wf pgeo-plsep_wf or_wf pgeo-lsep_wf pgeo-lpsep_wf pgeo-psep_wf exists_wf pgeo-incident_wf projective-plane-structure_subtype projective-plane-structure_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule sqequalHypSubstitution dependentIntersectionElimination dependentIntersectionEqElimination thin hypothesis applyEquality tokenEquality introduction extract_by_obid isectElimination lambdaEquality hypothesisEquality setEquality setElimination rename functionEquality productEquality because_Cache functionExtensionality

Latex:
\mforall{}g:ProjectivePlaneStructure.  \mforall{}a:Point.
    (pgeo-three-line-axiom(a)  \mmember{}  \mexists{}l,m,n:Line.  (a  I  l  \mwedge{}  a  I  m  \mwedge{}  a  I  n  \mwedge{}  l  \mneq{}  m  \mwedge{}  m  \mneq{}  n  \mwedge{}  n  \mneq{}  l))



Date html generated: 2018_05_22-PM-00_32_10
Last ObjectModification: 2017_11_03-AM-11_50_07

Theory : euclidean!plane!geometry


Home Index