Nuprl Lemma : pgeo-lpsep_wf
∀[p:ProjGeomPrimitives]. ∀[a:Line]. ∀[b:Point].  (a ≠ b ∈ ℙ)
Proof
Definitions occuring in Statement : 
pgeo-lpsep: a ≠ b
, 
pgeo-primitives: ProjGeomPrimitives
, 
pgeo-line: Line
, 
pgeo-point: Point
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
pgeo-lpsep: a ≠ b
Lemmas referenced : 
pgeo-plsep_wf, 
pgeo-point_wf, 
pgeo-line_wf, 
pgeo-primitives_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[p:ProjGeomPrimitives].  \mforall{}[a:Line].  \mforall{}[b:Point].    (a  \mneq{}  b  \mmember{}  \mBbbP{})
Date html generated:
2018_05_22-PM-00_24_59
Last ObjectModification:
2017_10_17-PM-04_37_56
Theory : euclidean!plane!geometry
Home
Index