Nuprl Lemma : pgeo-peq-sym

g:ProjectivePlane. ∀a,b:Point.  (a ≡  b ≡ a)


Proof




Definitions occuring in Statement :  projective-plane: ProjectivePlane pgeo-peq: a ≡ b pgeo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] prop: false: False member: t ∈ T not: ¬A pgeo-peq: a ≡ b implies:  Q all: x:A. B[x]
Lemmas referenced :  pgeo-point_wf pgeo-primitives_wf projective-plane-structure_wf basic-projective-plane_wf projective-plane_wf subtype_rel_transitivity projective-plane-subtype basic-projective-plane-subtype projective-plane-structure_subtype pgeo-peq_wf pgeo-psep_wf Error :pgeo-psep-sym
Rules used in proof :  independent_isectElimination instantiate sqequalRule because_Cache applyEquality isectElimination voidElimination hypothesis hypothesisEquality dependent_functionElimination extract_by_obid introduction cut thin independent_functionElimination sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:ProjectivePlane.  \mforall{}a,b:Point.    (a  \mequiv{}  b  {}\mRightarrow{}  b  \mequiv{}  a)



Date html generated: 2018_05_22-PM-00_44_38
Last ObjectModification: 2017_11_17-PM-00_19_13

Theory : euclidean!plane!geometry


Home Index