Nuprl Lemma : pgeo-peq_wf
∀[g:ProjGeomPrimitives]. ∀[a,b:Point].  (a ≡ b ∈ ℙ)
Proof
Definitions occuring in Statement : 
pgeo-peq: a ≡ b
, 
pgeo-primitives: ProjGeomPrimitives
, 
pgeo-point: Point
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
pgeo-peq: a ≡ b
Lemmas referenced : 
not_wf, 
pgeo-psep_wf, 
pgeo-point_wf, 
pgeo-primitives_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[g:ProjGeomPrimitives].  \mforall{}[a,b:Point].    (a  \mequiv{}  b  \mmember{}  \mBbbP{})
Date html generated:
2018_05_22-PM-00_25_30
Last ObjectModification:
2017_10_20-PM-01_00_52
Theory : euclidean!plane!geometry
Home
Index