Nuprl Lemma : pgeo-peq_wf

[g:ProjGeomPrimitives]. ∀[a,b:Point].  (a ≡ b ∈ ℙ)


Proof




Definitions occuring in Statement :  pgeo-peq: a ≡ b pgeo-primitives: ProjGeomPrimitives pgeo-point: Point uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pgeo-peq: a ≡ b
Lemmas referenced :  not_wf pgeo-psep_wf pgeo-point_wf pgeo-primitives_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[g:ProjGeomPrimitives].  \mforall{}[a,b:Point].    (a  \mequiv{}  b  \mmember{}  \mBbbP{})



Date html generated: 2018_05_22-PM-00_25_30
Last ObjectModification: 2017_10_20-PM-01_00_52

Theory : euclidean!plane!geometry


Home Index