Nuprl Lemma : pgeo-psep-or

g:ProjectivePlane. ∀p,q,r:Point.  (p ≠  {p ≠ r ∨ r ≠ q})


Proof




Definitions occuring in Statement :  projective-plane: ProjectivePlane pgeo-psep: a ≠ b pgeo-point: Point guard: {T} all: x:A. B[x] implies:  Q or: P ∨ Q
Definitions unfolded in proof :  uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: or: P ∨ Q projective-plane: ProjectivePlane member: t ∈ T and: P ∧ Q guard: {T} exists: x:A. B[x] pgeo-psep: a ≠ b implies:  Q all: x:A. B[x]
Lemmas referenced :  pgeo-point_wf pgeo-primitives_wf projective-plane-structure_wf basic-projective-plane_wf projective-plane_wf subtype_rel_transitivity projective-plane-subtype basic-projective-plane-subtype projective-plane-structure_subtype pgeo-psep_wf pgeo-plsep-to-psep LP-sep-or2
Rules used in proof :  independent_isectElimination instantiate inrFormation sqequalRule applyEquality isectElimination inlFormation because_Cache unionElimination independent_functionElimination hypothesisEquality rename setElimination dependent_functionElimination extract_by_obid introduction thin productElimination sqequalHypSubstitution hypothesis cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:ProjectivePlane.  \mforall{}p,q,r:Point.    (p  \mneq{}  q  {}\mRightarrow{}  \{p  \mneq{}  r  \mvee{}  r  \mneq{}  q\})



Date html generated: 2018_05_22-PM-00_43_45
Last ObjectModification: 2017_11_17-AM-11_59_04

Theory : euclidean!plane!geometry


Home Index