Nuprl Lemma : pgeo-psep-or
∀g:ProjectivePlane. ∀p,q,r:Point.  (p ≠ q 
⇒ {p ≠ r ∨ r ≠ q})
Proof
Definitions occuring in Statement : 
projective-plane: ProjectivePlane
, 
pgeo-psep: a ≠ b
, 
pgeo-point: Point
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
Definitions unfolded in proof : 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
projective-plane: ProjectivePlane
, 
member: t ∈ T
, 
and: P ∧ Q
, 
guard: {T}
, 
exists: ∃x:A. B[x]
, 
pgeo-psep: a ≠ b
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
pgeo-point_wf, 
pgeo-primitives_wf, 
projective-plane-structure_wf, 
basic-projective-plane_wf, 
projective-plane_wf, 
subtype_rel_transitivity, 
projective-plane-subtype, 
basic-projective-plane-subtype, 
projective-plane-structure_subtype, 
pgeo-psep_wf, 
pgeo-plsep-to-psep, 
LP-sep-or2
Rules used in proof : 
independent_isectElimination, 
instantiate, 
inrFormation, 
sqequalRule, 
applyEquality, 
isectElimination, 
inlFormation, 
because_Cache, 
unionElimination, 
independent_functionElimination, 
hypothesisEquality, 
rename, 
setElimination, 
dependent_functionElimination, 
extract_by_obid, 
introduction, 
thin, 
productElimination, 
sqequalHypSubstitution, 
hypothesis, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}g:ProjectivePlane.  \mforall{}p,q,r:Point.    (p  \mneq{}  q  {}\mRightarrow{}  \{p  \mneq{}  r  \mvee{}  r  \mneq{}  q\})
Date html generated:
2018_05_22-PM-00_43_45
Last ObjectModification:
2017_11_17-AM-11_59_04
Theory : euclidean!plane!geometry
Home
Index