Nuprl Lemma : pgeo-psep-test
∀g:ProjectivePlane. ∀a,b,a1,b1:Point.  (a ≡ a1 
⇒ b ≡ b1 
⇒ a ≡ b 
⇒ a1 ≡ b1)
Proof
Definitions occuring in Statement : 
projective-plane: ProjectivePlane
, 
pgeo-peq: a ≡ b
, 
pgeo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
pgeo-point_wf, 
pgeo-primitives_wf, 
projective-plane-structure_wf, 
basic-projective-plane_wf, 
projective-plane_wf, 
subtype_rel_transitivity, 
projective-plane-subtype, 
basic-projective-plane-subtype, 
projective-plane-structure_subtype, 
pgeo-peq_wf, 
pgeo-peq_transitivity, 
pgeo-peq_inversion
Rules used in proof : 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
applyEquality, 
isectElimination, 
hypothesis, 
independent_functionElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}g:ProjectivePlane.  \mforall{}a,b,a1,b1:Point.    (a  \mequiv{}  a1  {}\mRightarrow{}  b  \mequiv{}  b1  {}\mRightarrow{}  a  \mequiv{}  b  {}\mRightarrow{}  a1  \mequiv{}  b1)
Date html generated:
2018_05_22-PM-00_46_27
Last ObjectModification:
2017_11_20-AM-09_48_45
Theory : euclidean!plane!geometry
Home
Index