Nuprl Lemma : pgeo-psep-test

g:ProjectivePlane. ∀a,b,a1,b1:Point.  (a ≡ a1  b ≡ b1  a ≡  a1 ≡ b1)


Proof




Definitions occuring in Statement :  projective-plane: ProjectivePlane pgeo-peq: a ≡ b pgeo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: guard: {T} member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  pgeo-point_wf pgeo-primitives_wf projective-plane-structure_wf basic-projective-plane_wf projective-plane_wf subtype_rel_transitivity projective-plane-subtype basic-projective-plane-subtype projective-plane-structure_subtype pgeo-peq_wf pgeo-peq_transitivity pgeo-peq_inversion
Rules used in proof :  because_Cache sqequalRule independent_isectElimination instantiate applyEquality isectElimination hypothesis independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:ProjectivePlane.  \mforall{}a,b,a1,b1:Point.    (a  \mequiv{}  a1  {}\mRightarrow{}  b  \mequiv{}  b1  {}\mRightarrow{}  a  \mequiv{}  b  {}\mRightarrow{}  a1  \mequiv{}  b1)



Date html generated: 2018_05_22-PM-00_46_27
Last ObjectModification: 2017_11_20-AM-09_48_45

Theory : euclidean!plane!geometry


Home Index