Nuprl Lemma : pgeo-triangle-axiom2-dual

g:ProjectivePlane. ∀p,q:Line. ∀l,m:Point. ∀s:p ≠ q. ∀s1:l ≠ m.  (l ≠  m ≠    p ∧ q ≠ l ∨ m)


Proof




Definitions occuring in Statement :  projective-plane: ProjectivePlane pgeo-meet: l ∧ m pgeo-join: p ∨ q pgeo-lsep: l ≠ m pgeo-psep: a ≠ b pgeo-incident: b pgeo-plsep: a ≠ b pgeo-line: Line pgeo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  pgeo-line_wf pgeo-point_wf pgeo-lsep_wf pgeo-psep_wf pgeo-plsep_wf pgeo-primitives_wf projective-plane-structure_wf projective-plane-structure-complete_wf basic-projective-plane_wf projective-plane_wf subtype_rel_transitivity projective-plane-subtype basic-projective-plane-subtype projective-plane-structure-complete_subtype projective-plane-structure_subtype pgeo-incident_wf use-triangle-axiom2
Rules used in proof :  because_Cache sqequalRule independent_isectElimination instantiate applyEquality isectElimination hypothesis independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:ProjectivePlane.  \mforall{}p,q:Line.  \mforall{}l,m:Point.  \mforall{}s:p  \mneq{}  q.  \mforall{}s1:l  \mneq{}  m.
    (l  \mneq{}  p  {}\mRightarrow{}  m  \mneq{}  q  {}\mRightarrow{}  m  I  p  {}\mRightarrow{}  l  I  q  {}\mRightarrow{}  p  \mwedge{}  q  \mneq{}  l  \mvee{}  m)



Date html generated: 2018_05_22-PM-00_47_29
Last ObjectModification: 2017_11_27-PM-04_50_34

Theory : euclidean!plane!geometry


Home Index