Nuprl Lemma : pgeo-triangle-axiom2-dual
∀g:ProjectivePlane. ∀p,q:Line. ∀l,m:Point. ∀s:p ≠ q. ∀s1:l ≠ m.  (l ≠ p 
⇒ m ≠ q 
⇒ m I p 
⇒ l I q 
⇒ p ∧ q ≠ l ∨ m)
Proof
Definitions occuring in Statement : 
projective-plane: ProjectivePlane
, 
pgeo-meet: l ∧ m
, 
pgeo-join: p ∨ q
, 
pgeo-lsep: l ≠ m
, 
pgeo-psep: a ≠ b
, 
pgeo-incident: a I b
, 
pgeo-plsep: a ≠ b
, 
pgeo-line: Line
, 
pgeo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
pgeo-line_wf, 
pgeo-point_wf, 
pgeo-lsep_wf, 
pgeo-psep_wf, 
pgeo-plsep_wf, 
pgeo-primitives_wf, 
projective-plane-structure_wf, 
projective-plane-structure-complete_wf, 
basic-projective-plane_wf, 
projective-plane_wf, 
subtype_rel_transitivity, 
projective-plane-subtype, 
basic-projective-plane-subtype, 
projective-plane-structure-complete_subtype, 
projective-plane-structure_subtype, 
pgeo-incident_wf, 
use-triangle-axiom2
Rules used in proof : 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
applyEquality, 
isectElimination, 
hypothesis, 
independent_functionElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}g:ProjectivePlane.  \mforall{}p,q:Line.  \mforall{}l,m:Point.  \mforall{}s:p  \mneq{}  q.  \mforall{}s1:l  \mneq{}  m.
    (l  \mneq{}  p  {}\mRightarrow{}  m  \mneq{}  q  {}\mRightarrow{}  m  I  p  {}\mRightarrow{}  l  I  q  {}\mRightarrow{}  p  \mwedge{}  q  \mneq{}  l  \mvee{}  m)
Date html generated:
2018_05_22-PM-00_47_29
Last ObjectModification:
2017_11_27-PM-04_50_34
Theory : euclidean!plane!geometry
Home
Index