Nuprl Lemma : sq_stable__pgeo-axioms
∀g:ProjectivePlaneStructure. SqStable(BasicProjectiveGeometryAxioms(g))
Proof
Definitions occuring in Statement : 
projective-plane-structure: ProjectivePlaneStructure
, 
basic-pgeo-axioms: BasicProjectiveGeometryAxioms(g)
, 
sq_stable: SqStable(P)
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
Lemmas referenced : 
sq_stable-pgeo-axioms-if, 
projective-plane-structure_subtype, 
sq_stable__pgeo-plsep, 
pgeo-line_wf, 
pgeo-point_wf, 
projective-plane-structure_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
independent_functionElimination, 
dependent_functionElimination, 
because_Cache
Latex:
\mforall{}g:ProjectivePlaneStructure.  SqStable(BasicProjectiveGeometryAxioms(g))
Date html generated:
2018_05_22-PM-00_33_17
Last ObjectModification:
2017_10_30-PM-02_21_19
Theory : euclidean!plane!geometry
Home
Index