Nuprl Lemma : sq_stable-pgeo-axioms-if
∀[g:ProjGeomPrimitives]. ((∀a:Point. ∀L:Line.  SqStable(a ≠ L)) 
⇒ SqStable(BasicProjectiveGeometryAxioms(g)))
Proof
Definitions occuring in Statement : 
basic-pgeo-axioms: BasicProjectiveGeometryAxioms(g)
, 
pgeo-plsep: a ≠ b
, 
pgeo-primitives: ProjGeomPrimitives
, 
pgeo-line: Line
, 
pgeo-point: Point
, 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
basic-pgeo-axioms: BasicProjectiveGeometryAxioms(g)
, 
pgeo-leq: a ≡ b
, 
pgeo-peq: a ≡ b
, 
pgeo-incident: a I b
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
sq_stable: SqStable(P)
, 
not: ¬A
, 
false: False
Lemmas referenced : 
sq_stable__and, 
all_wf, 
pgeo-point_wf, 
not_wf, 
pgeo-psep_wf, 
pgeo-line_wf, 
pgeo-lsep_wf, 
pgeo-plsep_wf, 
sq_stable__all, 
sq_stable__not, 
sq_stable_wf, 
pgeo-peq_wf, 
pgeo-leq_wf, 
pgeo-incident_wf, 
squash_wf, 
basic-pgeo-axioms_wf, 
pgeo-primitives_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
isect_memberEquality, 
productEquality, 
because_Cache, 
functionEquality, 
independent_functionElimination, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
voidElimination
Latex:
\mforall{}[g:ProjGeomPrimitives]
    ((\mforall{}a:Point.  \mforall{}L:Line.    SqStable(a  \mneq{}  L))  {}\mRightarrow{}  SqStable(BasicProjectiveGeometryAxioms(g)))
Date html generated:
2018_05_22-PM-00_26_24
Last ObjectModification:
2017_10_30-PM-01_38_05
Theory : euclidean!plane!geometry
Home
Index