Nuprl Lemma : symmetry_preserves_midpoint
∀e:BasicGeometry. ∀a,b,c,d,e1,f,z:Point.  ((((a=z=d ∧ b=z=e1) ∧ c=z=f) ∧ a=b=c) 
⇒ d=e1=f)
Proof
Definitions occuring in Statement : 
geo-midpoint: a=m=b
, 
basic-geometry: BasicGeometry
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
geo-midpoint: a=m=b
, 
cand: A c∧ B
Lemmas referenced : 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
geo-point_wf, 
geo-midpoint_wf, 
geo-midpoint-diagonals-between, 
geo-midpoint-diagonals-congruent2
Rules used in proof : 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
applyEquality, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
cut, 
productEquality, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_pairFormation, 
independent_functionElimination, 
dependent_functionElimination
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,d,e1,f,z:Point.    ((((a=z=d  \mwedge{}  b=z=e1)  \mwedge{}  c=z=f)  \mwedge{}  a=b=c)  {}\mRightarrow{}  d=e1=f)
Date html generated:
2017_10_02-PM-06_33_52
Last ObjectModification:
2017_08_05-PM-04_44_05
Theory : euclidean!plane!geometry
Home
Index