Nuprl Lemma : geo-midpoint-diagonals-congruent2

e:BasicGeometry. ∀P,Q,R,S,P',Q',R',S',A:Point.  (((((P=A=P' ∧ Q=A=Q') ∧ R=A=R') ∧ S=A=S') ∧ PQ ≅ RS)  P'Q' ≅ R'S')


Proof




Definitions occuring in Statement :  geo-midpoint: a=m=b basic-geometry: BasicGeometry geo-congruent: ab ≅ cd geo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  uimplies: supposing a guard: {T} cand: c∧ B subtype_rel: A ⊆B uall: [x:A]. B[x] prop: member: t ∈ T and: P ∧ Q implies:  Q all: x:A. B[x] uiff: uiff(P;Q)
Lemmas referenced :  geo-point_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype geo-congruent_wf geo-midpoint_wf geo-midpoint-diagonals-congruent geo-congruent-iff-length
Rules used in proof :  sqequalRule independent_isectElimination instantiate applyEquality because_Cache hypothesis hypothesisEquality isectElimination extract_by_obid introduction cut productEquality thin productElimination sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution independent_functionElimination dependent_functionElimination equalitySymmetry equalityTransitivity

Latex:
\mforall{}e:BasicGeometry.  \mforall{}P,Q,R,S,P',Q',R',S',A:Point.
    (((((P=A=P'  \mwedge{}  Q=A=Q')  \mwedge{}  R=A=R')  \mwedge{}  S=A=S')  \mwedge{}  PQ  \00D0  RS)  {}\mRightarrow{}  P'Q'  \00D0  R'S')



Date html generated: 2017_10_02-PM-06_33_34
Last ObjectModification: 2017_08_05-PM-04_43_49

Theory : euclidean!plane!geometry


Home Index