Step
*
1
1
1
1
1
1
of Lemma
tarski-erect-perp-or
1. e : HeytingGeometry
2. a : Point
3. b : Point
4. c : Point
5. c # ba
6. x : Point
7. Colinear(a;b;x)
8. ab ⊥x cx
9. Colinear(a;b;x)
10. Colinear(c;x;x)
11. ∀u,v:Point. (Colinear(a;b;u)
⇒ Colinear(c;x;v)
⇒ Ruxv)
12. Raxc
13. Rbxc
14. c # ba
15. c ≠ x
16. c' : Point
17. c-x-c'
18. xc' ≅ cx
19. a ≠ x
20. ∀c':Point. (c'=x=c
⇒ ac ≅ ac')
21. ac ≅ ac'
22. c1 : Point
23. c-a-c1
24. ac1 ≅ ca
25. c' # c1a
26. p : Point
27. c'=p=c1
⊢ ∃p,t:Point. (((ab ⊥ pa ∨ ab ⊥ pb) ∧ Colinear(a;b;t)) ∧ p-t-c)
BY
{ (Assert Rxap BY
(InstLemma `geo-perp-midsegments` [⌜e⌝;⌜a⌝;⌜x⌝;⌜c⌝]⋅ THENA Auto)) }
1
1. e : HeytingGeometry
2. a : Point
3. b : Point
4. c : Point
5. c # ba
6. x : Point
7. Colinear(a;b;x)
8. ab ⊥x cx
9. Colinear(a;b;x)
10. Colinear(c;x;x)
11. ∀u,v:Point. (Colinear(a;b;u)
⇒ Colinear(c;x;v)
⇒ Ruxv)
12. Raxc
13. Rbxc
14. c # ba
15. c ≠ x
16. c' : Point
17. c-x-c'
18. xc' ≅ cx
19. a ≠ x
20. ∀c':Point. (c'=x=c
⇒ ac ≅ ac')
21. ac ≅ ac'
22. c1 : Point
23. c-a-c1
24. ac1 ≅ ca
25. c' # c1a
26. p : Point
27. c'=p=c1
28. ∀c',d,p:Point. (c'=p=d
⇒ c'=a=c
⇒ d=x=c
⇒ Rxap)
⊢ Rxap
2
1. e : HeytingGeometry
2. a : Point
3. b : Point
4. c : Point
5. c # ba
6. x : Point
7. Colinear(a;b;x)
8. ab ⊥x cx
9. Colinear(a;b;x)
10. Colinear(c;x;x)
11. ∀u,v:Point. (Colinear(a;b;u)
⇒ Colinear(c;x;v)
⇒ Ruxv)
12. Raxc
13. Rbxc
14. c # ba
15. c ≠ x
16. c' : Point
17. c-x-c'
18. xc' ≅ cx
19. a ≠ x
20. ∀c':Point. (c'=x=c
⇒ ac ≅ ac')
21. ac ≅ ac'
22. c1 : Point
23. c-a-c1
24. ac1 ≅ ca
25. c' # c1a
26. p : Point
27. c'=p=c1
28. Rxap
⊢ ∃p,t:Point. (((ab ⊥ pa ∨ ab ⊥ pb) ∧ Colinear(a;b;t)) ∧ p-t-c)
Latex:
Latex:
1. e : HeytingGeometry
2. a : Point
3. b : Point
4. c : Point
5. c \# ba
6. x : Point
7. Colinear(a;b;x)
8. ab \mbot{}x cx
9. Colinear(a;b;x)
10. Colinear(c;x;x)
11. \mforall{}u,v:Point. (Colinear(a;b;u) {}\mRightarrow{} Colinear(c;x;v) {}\mRightarrow{} Ruxv)
12. Raxc
13. Rbxc
14. c \# ba
15. c \mneq{} x
16. c' : Point
17. c-x-c'
18. xc' \mcong{} cx
19. a \mneq{} x
20. \mforall{}c':Point. (c'=x=c {}\mRightarrow{} ac \mcong{} ac')
21. ac \mcong{} ac'
22. c1 : Point
23. c-a-c1
24. ac1 \mcong{} ca
25. c' \# c1a
26. p : Point
27. c'=p=c1
\mvdash{} \mexists{}p,t:Point. (((ab \mbot{} pa \mvee{} ab \mbot{} pb) \mwedge{} Colinear(a;b;t)) \mwedge{} p-t-c)
By
Latex:
(Assert Rxap BY
(InstLemma `geo-perp-midsegments` [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}x\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{}]\mcdot{} THENA Auto))
Home
Index