Step
*
1
1
of Lemma
tarski-perp-in-exists
1. e : HeytingGeometry
2. a : Point
3. b : Point
4. c : Point
5. a # bc
6. a ≠ b
7. y : Point
8. b-a-y
9. ay ≅ ac
10. q : Point
11. c-y-q ∧ yq ≅ ay
⊢ ∃x:Point. (Colinear(a;b;x) ∧ ab ⊥x cx)
BY
{ (Assert ⌜∃p:Point. y=p=c⌝ BY
((InstLemma `geo-congruent-mid-exists` [⌜e⌝;⌜y⌝;⌜c⌝;⌜a⌝]⋅ THENA Auto)
THEN ExRepD
THEN InstConcl [⌜x⌝]⋅
THEN Auto)) }
1
1. e : HeytingGeometry
2. a : Point
3. b : Point
4. c : Point
5. a # bc
6. a ≠ b
7. y : Point
8. b-a-y
9. ay ≅ ac
10. q : Point
11. c-y-q ∧ yq ≅ ay
12. ∃p:Point. y=p=c
⊢ ∃x:Point. (Colinear(a;b;x) ∧ ab ⊥x cx)
Latex:
Latex:
1. e : HeytingGeometry
2. a : Point
3. b : Point
4. c : Point
5. a \# bc
6. a \mneq{} b
7. y : Point
8. b-a-y
9. ay \00D0 ac
10. q : Point
11. c-y-q \mwedge{} yq \00D0 ay
\mvdash{} \mexists{}x:Point. (Colinear(a;b;x) \mwedge{} ab \mbot{}x cx)
By
Latex:
(Assert \mkleeneopen{}\mexists{}p:Point. y=p=c\mkleeneclose{} BY
((InstLemma `geo-congruent-mid-exists` [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}y\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{}]\mcdot{} THENA Auto)
THEN ExRepD
THEN InstConcl [\mkleeneopen{}x\mkleeneclose{}]\mcdot{}
THEN Auto))
Home
Index