Step
*
2
1
1
1
of Lemma
weak-same-side-invariant
1. e : BasicGeometry
2. ∀[A,B,C:Point].
(¬¬(((∀P:Point. (P leftof AB
⇐⇒ P leftof CB)) ∧ (∀P:Point. (P leftof BA
⇐⇒ P leftof BC)))
∨ ((∀P:Point. (P leftof AB
⇐⇒ P leftof BC)) ∧ (∀P:Point. (P leftof BA
⇐⇒ P leftof CB))))) supposing
(A ≠ B and
C ≠ B and
Colinear(B;C;A))
3. A : Point
4. B : Point
5. C : Point
6. D : Point
7. Colinear(D;A;B)
8. Colinear(C;A;B)
9. C ≠ D
10. A ≠ B
11. A ≠ C
12. ¬¬(((∀P:Point. (P leftof BA
⇐⇒ P leftof CA)) ∧ (∀P:Point. (P leftof AB
⇐⇒ P leftof AC)))
∨ ((∀P:Point. (P leftof BA
⇐⇒ P leftof AC)) ∧ (∀P:Point. (P leftof AB
⇐⇒ P leftof CA))))
13. ¬¬(((∀P:Point. (P leftof DC
⇐⇒ P leftof AC)) ∧ (∀P:Point. (P leftof CD
⇐⇒ P leftof CA)))
∨ ((∀P:Point. (P leftof DC
⇐⇒ P leftof CA)) ∧ (∀P:Point. (P leftof CD
⇐⇒ P leftof AC))))
⊢ ¬¬(((∀P:Point. (P leftof AB
⇐⇒ P leftof CD)) ∧ (∀P:Point. (P leftof BA
⇐⇒ P leftof DC)))
∨ ((∀P:Point. (P leftof AB
⇐⇒ P leftof DC)) ∧ (∀P:Point. (P leftof BA
⇐⇒ P leftof CD))))
BY
{ ((SupposeMore (-1) THENA Auto) THEN (SupposeMore (-2) THENA Auto) THEN (RemoveDoubleNegation THENA Auto)) }
1
1. e : BasicGeometry
2. ∀[A,B,C:Point].
(¬¬(((∀P:Point. (P leftof AB
⇐⇒ P leftof CB)) ∧ (∀P:Point. (P leftof BA
⇐⇒ P leftof BC)))
∨ ((∀P:Point. (P leftof AB
⇐⇒ P leftof BC)) ∧ (∀P:Point. (P leftof BA
⇐⇒ P leftof CB))))) supposing
(A ≠ B and
C ≠ B and
Colinear(B;C;A))
3. A : Point
4. B : Point
5. C : Point
6. D : Point
7. Colinear(D;A;B)
8. Colinear(C;A;B)
9. C ≠ D
10. A ≠ B
11. A ≠ C
12. ((∀P:Point. (P leftof DC
⇐⇒ P leftof AC)) ∧ (∀P:Point. (P leftof CD
⇐⇒ P leftof CA)))
∨ ((∀P:Point. (P leftof DC
⇐⇒ P leftof CA)) ∧ (∀P:Point. (P leftof CD
⇐⇒ P leftof AC)))
13. ((∀P:Point. (P leftof BA
⇐⇒ P leftof CA)) ∧ (∀P:Point. (P leftof AB
⇐⇒ P leftof AC)))
∨ ((∀P:Point. (P leftof BA
⇐⇒ P leftof AC)) ∧ (∀P:Point. (P leftof AB
⇐⇒ P leftof CA)))
⊢ ((∀P:Point. (P leftof AB
⇐⇒ P leftof CD)) ∧ (∀P:Point. (P leftof BA
⇐⇒ P leftof DC)))
∨ ((∀P:Point. (P leftof AB
⇐⇒ P leftof DC)) ∧ (∀P:Point. (P leftof BA
⇐⇒ P leftof CD)))
Latex:
Latex:
1. e : BasicGeometry
2. \mforall{}[A,B,C:Point].
(\mneg{}\mneg{}(((\mforall{}P:Point. (P leftof AB \mLeftarrow{}{}\mRightarrow{} P leftof CB)) \mwedge{} (\mforall{}P:Point. (P leftof BA \mLeftarrow{}{}\mRightarrow{} P leftof BC)))
\mvee{} ((\mforall{}P:Point. (P leftof AB \mLeftarrow{}{}\mRightarrow{} P leftof BC))
\mwedge{} (\mforall{}P:Point. (P leftof BA \mLeftarrow{}{}\mRightarrow{} P leftof CB))))) supposing
(A \mneq{} B and
C \mneq{} B and
Colinear(B;C;A))
3. A : Point
4. B : Point
5. C : Point
6. D : Point
7. Colinear(D;A;B)
8. Colinear(C;A;B)
9. C \mneq{} D
10. A \mneq{} B
11. A \mneq{} C
12. \mneg{}\mneg{}(((\mforall{}P:Point. (P leftof BA \mLeftarrow{}{}\mRightarrow{} P leftof CA)) \mwedge{} (\mforall{}P:Point. (P leftof AB \mLeftarrow{}{}\mRightarrow{} P leftof AC)))
\mvee{} ((\mforall{}P:Point. (P leftof BA \mLeftarrow{}{}\mRightarrow{} P leftof AC)) \mwedge{} (\mforall{}P:Point. (P leftof AB \mLeftarrow{}{}\mRightarrow{} P leftof CA))))
13. \mneg{}\mneg{}(((\mforall{}P:Point. (P leftof DC \mLeftarrow{}{}\mRightarrow{} P leftof AC)) \mwedge{} (\mforall{}P:Point. (P leftof CD \mLeftarrow{}{}\mRightarrow{} P leftof CA)))
\mvee{} ((\mforall{}P:Point. (P leftof DC \mLeftarrow{}{}\mRightarrow{} P leftof CA)) \mwedge{} (\mforall{}P:Point. (P leftof CD \mLeftarrow{}{}\mRightarrow{} P leftof AC))))
\mvdash{} \mneg{}\mneg{}(((\mforall{}P:Point. (P leftof AB \mLeftarrow{}{}\mRightarrow{} P leftof CD)) \mwedge{} (\mforall{}P:Point. (P leftof BA \mLeftarrow{}{}\mRightarrow{} P leftof DC)))
\mvee{} ((\mforall{}P:Point. (P leftof AB \mLeftarrow{}{}\mRightarrow{} P leftof DC)) \mwedge{} (\mforall{}P:Point. (P leftof BA \mLeftarrow{}{}\mRightarrow{} P leftof CD))))
By
Latex:
((SupposeMore (-1) THENA Auto)
THEN (SupposeMore (-2) THENA Auto)
THEN (RemoveDoubleNegation THENA Auto))
Home
Index