Nuprl Lemma : weak-same-side-invariant

[e:BasicGeometry]. ∀[A,B,C,D:Point].
  (¬¬(((∀P:Point. (P leftof AB ⇐⇒ leftof CD)) ∧ (∀P:Point. (P leftof BA ⇐⇒ leftof DC)))
     ∨ ((∀P:Point. (P leftof AB ⇐⇒ leftof DC)) ∧ (∀P:Point. (P leftof BA ⇐⇒ leftof CD))))) supposing 
     (A ≠ and 
     C ≠ and 
     Colinear(C;A;B) and 
     Colinear(D;A;B))


Proof




Definitions occuring in Statement :  basic-geometry: BasicGeometry geo-colinear: Colinear(a;b;c) geo-left: leftof bc geo-sep: a ≠ b geo-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q not: ¬A or: P ∨ Q and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A implies:  Q false: False subtype_rel: A ⊆B basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane basic-geometry-: BasicGeometry- all: x:A. B[x] prop: and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q guard: {T} stable: Stable{P} or: P ∨ Q geo-eq: a ≡ b cand: c∧ B geo-out: out(p ab) geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) less_than: a < b squash: T true: True select: L[n] cons: [a b] subtract: m exists: x:A. B[x] append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3]
Lemmas referenced :  basic-geometry_wf geo-simple-colinear-cases subtype_rel_self basic-geometry-_wf false_wf stable__false geo-between_wf not_wf or_wf all_wf geo-point_wf iff_wf geo-left_wf geo-sep_wf geo-colinear_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf euclidean-plane-subtype-oriented oriented-plane_wf minimal-double-negation-hyp-elim geo-between_functionality geo-eq_weakening geo-left_functionality geo-sep_functionality geo-colinear_functionality minimal-not-not-excluded-middle left-convex2 left-all-symmetry left-convex geo-between-out geo-out_wf geo-sep-sym geo-left-out-better-1 geo-between-symmetry left-between-implies-right1 geo-out_inversion geo-left-out-better left-between-implies-right2 geo-sep-or geo-colinear-is-colinear-set length_of_cons_lemma length_of_nil_lemma lelt_wf oriented-colinear-append cons_wf nil_wf cons_member l_member_wf equal_wf exists_wf list_ind_cons_lemma list_ind_nil_lemma double-negation-hyp-elim
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid hypothesis lambdaFormation sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality sqequalRule instantiate dependent_functionElimination independent_functionElimination because_Cache productEquality lambdaEquality independent_isectElimination functionEquality unionElimination voidElimination productElimination addLevel impliesFunctionality orFunctionality independent_pairFormation allFunctionality andLevelFunctionality allLevelFunctionality impliesLevelFunctionality orLevelFunctionality levelHypothesis promote_hyp inlFormation inrFormation isect_memberEquality equalityTransitivity equalitySymmetry setElimination rename dependent_set_memberEquality voidEquality natural_numberEquality imageMemberEquality baseClosed dependent_pairFormation

Latex:
\mforall{}[e:BasicGeometry].  \mforall{}[A,B,C,D:Point].
    (\mneg{}\mneg{}(((\mforall{}P:Point.  (P  leftof  AB  \mLeftarrow{}{}\mRightarrow{}  P  leftof  CD))  \mwedge{}  (\mforall{}P:Point.  (P  leftof  BA  \mLeftarrow{}{}\mRightarrow{}  P  leftof  DC)))
          \mvee{}  ((\mforall{}P:Point.  (P  leftof  AB  \mLeftarrow{}{}\mRightarrow{}  P  leftof  DC))
              \mwedge{}  (\mforall{}P:Point.  (P  leftof  BA  \mLeftarrow{}{}\mRightarrow{}  P  leftof  CD)))))  supposing 
          (A  \mneq{}  B  and 
          C  \mneq{}  D  and 
          Colinear(C;A;B)  and 
          Colinear(D;A;B))



Date html generated: 2018_05_22-PM-00_00_03
Last ObjectModification: 2018_04_23-PM-06_55_04

Theory : euclidean!plane!geometry


Home Index