Nuprl Lemma : weak-same-side-invariant
∀[e:BasicGeometry]. ∀[A,B,C,D:Point].
  (¬¬(((∀P:Point. (P leftof AB 
⇐⇒ P leftof CD)) ∧ (∀P:Point. (P leftof BA 
⇐⇒ P leftof DC)))
     ∨ ((∀P:Point. (P leftof AB 
⇐⇒ P leftof DC)) ∧ (∀P:Point. (P leftof BA 
⇐⇒ P leftof CD))))) supposing 
     (A ≠ B and 
     C ≠ D and 
     Colinear(C;A;B) and 
     Colinear(D;A;B))
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry
, 
geo-colinear: Colinear(a;b;c)
, 
geo-left: a leftof bc
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
or: P ∨ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
, 
basic-geometry: BasicGeometry
, 
euclidean-plane: EuclideanPlane
, 
basic-geometry-: BasicGeometry-
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
stable: Stable{P}
, 
or: P ∨ Q
, 
geo-eq: a ≡ b
, 
cand: A c∧ B
, 
geo-out: out(p ab)
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
l_all: (∀x∈L.P[x])
, 
top: Top
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
, 
exists: ∃x:A. B[x]
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
basic-geometry_wf, 
geo-simple-colinear-cases, 
subtype_rel_self, 
basic-geometry-_wf, 
false_wf, 
stable__false, 
geo-between_wf, 
not_wf, 
or_wf, 
all_wf, 
geo-point_wf, 
iff_wf, 
geo-left_wf, 
geo-sep_wf, 
geo-colinear_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
euclidean-plane-subtype-oriented, 
oriented-plane_wf, 
minimal-double-negation-hyp-elim, 
geo-between_functionality, 
geo-eq_weakening, 
geo-left_functionality, 
geo-sep_functionality, 
geo-colinear_functionality, 
minimal-not-not-excluded-middle, 
left-convex2, 
left-all-symmetry, 
left-convex, 
geo-between-out, 
geo-out_wf, 
geo-sep-sym, 
geo-left-out-better-1, 
geo-between-symmetry, 
left-between-implies-right1, 
geo-out_inversion, 
geo-left-out-better, 
left-between-implies-right2, 
geo-sep-or, 
geo-colinear-is-colinear-set, 
length_of_cons_lemma, 
length_of_nil_lemma, 
lelt_wf, 
oriented-colinear-append, 
cons_wf, 
nil_wf, 
cons_member, 
l_member_wf, 
equal_wf, 
exists_wf, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
double-negation-hyp-elim
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
lambdaFormation, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
instantiate, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
productEquality, 
lambdaEquality, 
independent_isectElimination, 
functionEquality, 
unionElimination, 
voidElimination, 
productElimination, 
addLevel, 
impliesFunctionality, 
orFunctionality, 
independent_pairFormation, 
allFunctionality, 
andLevelFunctionality, 
allLevelFunctionality, 
impliesLevelFunctionality, 
orLevelFunctionality, 
levelHypothesis, 
promote_hyp, 
inlFormation, 
inrFormation, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
dependent_set_memberEquality, 
voidEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
dependent_pairFormation
Latex:
\mforall{}[e:BasicGeometry].  \mforall{}[A,B,C,D:Point].
    (\mneg{}\mneg{}(((\mforall{}P:Point.  (P  leftof  AB  \mLeftarrow{}{}\mRightarrow{}  P  leftof  CD))  \mwedge{}  (\mforall{}P:Point.  (P  leftof  BA  \mLeftarrow{}{}\mRightarrow{}  P  leftof  DC)))
          \mvee{}  ((\mforall{}P:Point.  (P  leftof  AB  \mLeftarrow{}{}\mRightarrow{}  P  leftof  DC))
              \mwedge{}  (\mforall{}P:Point.  (P  leftof  BA  \mLeftarrow{}{}\mRightarrow{}  P  leftof  CD)))))  supposing 
          (A  \mneq{}  B  and 
          C  \mneq{}  D  and 
          Colinear(C;A;B)  and 
          Colinear(D;A;B))
Date html generated:
2018_05_22-PM-00_00_03
Last ObjectModification:
2018_04_23-PM-06_55_04
Theory : euclidean!plane!geometry
Home
Index