Step
*
1
2
2
1
1
1
1
of Lemma
implies-isometry-lemma3
1. rv : InnerProductSpace
2. f : Point(rv) ⟶ Point(rv)
3. r : {r:ℝ| r0 < r}
4. ∀x,y:Point(rv). (x ≡ y
⇒ f x ≡ f y)
5. ∀x,y:Point(rv). (((||x - y|| = r) ∨ (||x - y|| = (r(2) * r)))
⇒ (||f x - f y|| = ||x - y||))
6. ∀x,y:Point(rv). ((||x - y|| = r)
⇒ (∀j:ℕ. f x + r(j)*y - x ≡ f x + r(j)*f y - f x))
7. n : ℕ+
8. m : ℕ+
9. x : Point(rv)
10. y : Point(rv)
11. ||x - y|| = (r(n) * r/r(m))
12. ¬((||x - y|| = r) ∨ (||x - y|| = (r(2) * r)))
13. z : Point(rv)
14. ||z - x|| = (r(n) * r)
15. ||z - y|| = (r(n) * r)
16. a : Point(rv)
17. b : Point(rv)
18. x' : Point(rv)
19. y' : Point(rv)
20. x ≡ z + r(n)*a - z
21. y ≡ z + r(n)*b - z
22. x' ≡ z + r(m)*a - z
23. y' ≡ z + r(m)*b - z
24. z - x ≡ r(n)*z - a
⊢ ||z - a|| = r
BY
{ ((Assert ||z - x|| = (r(n) * r) BY
Hypothesis)
THEN (RWW "-2 rv-norm-mul rabs-of-nonneg" (-1) THENA Auto)
THEN nRMul ⌜r(n)⌝ 0⋅
THEN Auto) }
Latex:
Latex:
1. rv : InnerProductSpace
2. f : Point(rv) {}\mrightarrow{} Point(rv)
3. r : \{r:\mBbbR{}| r0 < r\}
4. \mforall{}x,y:Point(rv). (x \mequiv{} y {}\mRightarrow{} f x \mequiv{} f y)
5. \mforall{}x,y:Point(rv). (((||x - y|| = r) \mvee{} (||x - y|| = (r(2) * r))) {}\mRightarrow{} (||f x - f y|| = ||x - y||))
6. \mforall{}x,y:Point(rv). ((||x - y|| = r) {}\mRightarrow{} (\mforall{}j:\mBbbN{}. f x + r(j)*y - x \mequiv{} f x + r(j)*f y - f x))
7. n : \mBbbN{}\msupplus{}
8. m : \mBbbN{}\msupplus{}
9. x : Point(rv)
10. y : Point(rv)
11. ||x - y|| = (r(n) * r/r(m))
12. \mneg{}((||x - y|| = r) \mvee{} (||x - y|| = (r(2) * r)))
13. z : Point(rv)
14. ||z - x|| = (r(n) * r)
15. ||z - y|| = (r(n) * r)
16. a : Point(rv)
17. b : Point(rv)
18. x' : Point(rv)
19. y' : Point(rv)
20. x \mequiv{} z + r(n)*a - z
21. y \mequiv{} z + r(n)*b - z
22. x' \mequiv{} z + r(m)*a - z
23. y' \mequiv{} z + r(m)*b - z
24. z - x \mequiv{} r(n)*z - a
\mvdash{} ||z - a|| = r
By
Latex:
((Assert ||z - x|| = (r(n) * r) BY
Hypothesis)
THEN (RWW "-2 rv-norm-mul rabs-of-nonneg" (-1) THENA Auto)
THEN nRMul \mkleeneopen{}r(n)\mkleeneclose{} 0\mcdot{}
THEN Auto)
Home
Index