Step
*
1
2
1
of Lemma
ip-between-iff
1. rv : InnerProductSpace
2. a : Point
3. b : Point
4. c : Point
5. a # b
6. c # b
7. ((||a - b|| * ||c - b||) + a - b ⋅ c - b) = r0
8. t : ℝ
9. c - b ≡ t*a - b
⊢ ∃t:ℝ. ((t ∈ (r0, r1)) ∧ b ≡ t*a + r1 - t*c)
BY
{ Assert ⌜t ≤ r0⌝⋅ }
1
.....assertion..... 
1. rv : InnerProductSpace
2. a : Point
3. b : Point
4. c : Point
5. a # b
6. c # b
7. ((||a - b|| * ||c - b||) + a - b ⋅ c - b) = r0
8. t : ℝ
9. c - b ≡ t*a - b
⊢ t ≤ r0
2
1. rv : InnerProductSpace
2. a : Point
3. b : Point
4. c : Point
5. a # b
6. c # b
7. ((||a - b|| * ||c - b||) + a - b ⋅ c - b) = r0
8. t : ℝ
9. c - b ≡ t*a - b
10. t ≤ r0
⊢ ∃t:ℝ. ((t ∈ (r0, r1)) ∧ b ≡ t*a + r1 - t*c)
Latex:
Latex:
1.  rv  :  InnerProductSpace
2.  a  :  Point
3.  b  :  Point
4.  c  :  Point
5.  a  \#  b
6.  c  \#  b
7.  ((||a  -  b||  *  ||c  -  b||)  +  a  -  b  \mcdot{}  c  -  b)  =  r0
8.  t  :  \mBbbR{}
9.  c  -  b  \mequiv{}  t*a  -  b
\mvdash{}  \mexists{}t:\mBbbR{}.  ((t  \mmember{}  (r0,  r1))  \mwedge{}  b  \mequiv{}  t*a  +  r1  -  t*c)
By
Latex:
Assert  \mkleeneopen{}t  \mleq{}  r0\mkleeneclose{}\mcdot{}
Home
Index