Nuprl Lemma : mktopspace_wf
∀[T:Type]. ∀[E:T ⟶ T ⟶ ℙ]. ∀[equiv:EquivRel(T;x,y.E x y)].  (mktopspace(T;E;equiv) ∈ Space)
Proof
Definitions occuring in Statement : 
mktopspace: mktopspace(T;E;equiv)
, 
topspace: Space
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
topspace: Space
, 
mktopspace: mktopspace(T;E;equiv)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
equiv_rel_wf
Rules used in proof : 
because_Cache, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
universeEquality, 
cumulativity, 
functionEquality, 
productEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
hypothesisEquality, 
dependent_pairEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:Type].  \mforall{}[E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[equiv:EquivRel(T;x,y.E  x  y)].    (mktopspace(T;E;equiv)  \mmember{}  Space)
Date html generated:
2018_07_29-AM-09_49_03
Last ObjectModification:
2018_06_21-AM-10_44_11
Theory : inner!product!spaces
Home
Index