Nuprl Lemma : mktopspace_wf

[T:Type]. ∀[E:T ⟶ T ⟶ ℙ]. ∀[equiv:EquivRel(T;x,y.E y)].  (mktopspace(T;E;equiv) ∈ Space)


Proof




Definitions occuring in Statement :  mktopspace: mktopspace(T;E;equiv) topspace: Space equiv_rel: EquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: member: t ∈ T apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  prop: so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] topspace: Space mktopspace: mktopspace(T;E;equiv) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  equiv_rel_wf
Rules used in proof :  because_Cache isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality universeEquality cumulativity functionEquality productEquality hypothesis applyEquality lambdaEquality thin isectElimination sqequalHypSubstitution extract_by_obid hypothesisEquality dependent_pairEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  \mforall{}[E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[equiv:EquivRel(T;x,y.E  x  y)].    (mktopspace(T;E;equiv)  \mmember{}  Space)



Date html generated: 2018_07_29-AM-09_49_03
Last ObjectModification: 2018_06_21-AM-10_44_11

Theory : inner!product!spaces


Home Index