Step
*
2
1
2
2
of Lemma
rv-orthogonal-iff
1. rv : InnerProductSpace
2. f : Point(rv) ⟶ Point(rv)
3. f 0 ≡ 0
4. Isometry(f)
5. ∀x,y:Point(rv). (x ≡ y
⇒ f x ≡ f y)
6. x : Point(rv)
7. y : Point(rv)
8. ∀a,b:Point(rv). f (r1/r(2))*a + b ≡ (r1/r(2))*f a + f b
9. ∀a:Point(rv). f (r1/r(2))*a ≡ (r1/r(2))*f a
⊢ f x + y ≡ f x + f y
BY
{ (Assert ∀a:Point(rv). f a ≡ r(2)*f (r1/r(2))*a BY
(ParallelLast
THEN (InstLemma `rv-mul_functionality` [⌜rv⌝;⌜r(2)⌝;⌜r(2)⌝]⋅ THENA Auto)
THEN (FHyp (-1) [-2] THENA Auto)
THEN RWO "-1" 0
THEN Auto
THEN (RWO "rv-mul-mul" 0 THENA Auto)
THEN nRNorm 0
THEN Auto
THEN RWO "rv-mul1" 0⋅
THEN Auto)) }
1
1. rv : InnerProductSpace
2. f : Point(rv) ⟶ Point(rv)
3. f 0 ≡ 0
4. Isometry(f)
5. ∀x,y:Point(rv). (x ≡ y
⇒ f x ≡ f y)
6. x : Point(rv)
7. y : Point(rv)
8. ∀a,b:Point(rv). f (r1/r(2))*a + b ≡ (r1/r(2))*f a + f b
9. ∀a:Point(rv). f (r1/r(2))*a ≡ (r1/r(2))*f a
10. ∀a:Point(rv). f a ≡ r(2)*f (r1/r(2))*a
⊢ f x + y ≡ f x + f y
Latex:
Latex:
1. rv : InnerProductSpace
2. f : Point(rv) {}\mrightarrow{} Point(rv)
3. f 0 \mequiv{} 0
4. Isometry(f)
5. \mforall{}x,y:Point(rv). (x \mequiv{} y {}\mRightarrow{} f x \mequiv{} f y)
6. x : Point(rv)
7. y : Point(rv)
8. \mforall{}a,b:Point(rv). f (r1/r(2))*a + b \mequiv{} (r1/r(2))*f a + f b
9. \mforall{}a:Point(rv). f (r1/r(2))*a \mequiv{} (r1/r(2))*f a
\mvdash{} f x + y \mequiv{} f x + f y
By
Latex:
(Assert \mforall{}a:Point(rv). f a \mequiv{} r(2)*f (r1/r(2))*a BY
(ParallelLast
THEN (InstLemma `rv-mul\_functionality` [\mkleeneopen{}rv\mkleeneclose{};\mkleeneopen{}r(2)\mkleeneclose{};\mkleeneopen{}r(2)\mkleeneclose{}]\mcdot{} THENA Auto)
THEN (FHyp (-1) [-2] THENA Auto)
THEN RWO "-1" 0
THEN Auto
THEN (RWO "rv-mul-mul" 0 THENA Auto)
THEN nRNorm 0
THEN Auto
THEN RWO "rv-mul1" 0\mcdot{}
THEN Auto))
Home
Index