Nuprl Lemma : cal-point
∀[T,eq,P:Top].
  (Point(constrained-antichain-lattice(T;eq;P)) ~ {ac:fset(fset(T))| (↑fset-antichain(eq;ac)) ∧ fset-all(ac;a.P a)} )
Proof
Definitions occuring in Statement : 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
lattice-point: Point(l)
, 
fset-antichain: fset-antichain(eq;ac)
, 
fset-all: fset-all(s;x.P[x])
, 
fset: fset(T)
, 
assert: ↑b
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesis, 
sqequalAxiom, 
lemma_by_obid, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[T,eq,P:Top].
    (Point(constrained-antichain-lattice(T;eq;P))  \msim{}  \{ac:fset(fset(T))| 
                                                                                                      (\muparrow{}fset-antichain(eq;ac))  \mwedge{}  fset-all(ac;a.P  a)\}  )
Date html generated:
2016_05_18-AM-11_29_02
Last ObjectModification:
2016_01_15-PM-03_35_15
Theory : lattices
Home
Index