Nuprl Lemma : e-type_wf

EType ∈ 𝕌'


Proof




Definitions occuring in Statement :  e-type: EType member: t ∈ T universe: Type
Definitions unfolded in proof :  e-type: EType member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] subtype_rel: A ⊆B prop: so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  quotient_wf ext-eq_wf ext-eq-equiv
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination thin closedConclusion universeEquality lambdaEquality_alt hypothesisEquality hypothesis applyEquality cumulativity inhabitedIsType equalityTransitivity equalitySymmetry universeIsType independent_isectElimination

Latex:
EType  \mmember{}  \mBbbU{}'



Date html generated: 2019_10_31-AM-07_19_38
Last ObjectModification: 2018_10_12-PM-00_20_01

Theory : lattices


Home Index