Step
*
2
2
of Lemma
fdl-hom_wf
1. X : Type
2. L : BoundedDistributiveLattice
3. f : X ⟶ Point(L)
4. ((fdl-hom(L;f) 0) = 0 ∈ Point(L)) ∧ ((fdl-hom(L;f) 1) = 1 ∈ Point(L))
5. ∀as,bs:X List List. (fdl-hom(L;f) as ∨ fdl-hom(L;f) bs = (fdl-hom(L;f) as ∨ bs) ∈ Point(L))
⊢ fdl-hom(L;f) ∈ Hom(free-dl(X);L)
BY
{ Assert ⌜fdl-hom(L;f) ∈ free-dl-type(X) ⟶ Point(L)⌝⋅ }
1
.....assertion.....
1. X : Type
2. L : BoundedDistributiveLattice
3. f : X ⟶ Point(L)
4. ((fdl-hom(L;f) 0) = 0 ∈ Point(L)) ∧ ((fdl-hom(L;f) 1) = 1 ∈ Point(L))
5. ∀as,bs:X List List. (fdl-hom(L;f) as ∨ fdl-hom(L;f) bs = (fdl-hom(L;f) as ∨ bs) ∈ Point(L))
⊢ fdl-hom(L;f) ∈ free-dl-type(X) ⟶ Point(L)
2
1. X : Type
2. L : BoundedDistributiveLattice
3. f : X ⟶ Point(L)
4. ((fdl-hom(L;f) 0) = 0 ∈ Point(L)) ∧ ((fdl-hom(L;f) 1) = 1 ∈ Point(L))
5. ∀as,bs:X List List. (fdl-hom(L;f) as ∨ fdl-hom(L;f) bs = (fdl-hom(L;f) as ∨ bs) ∈ Point(L))
6. fdl-hom(L;f) ∈ free-dl-type(X) ⟶ Point(L)
⊢ fdl-hom(L;f) ∈ Hom(free-dl(X);L)
Latex:
Latex:
1. X : Type
2. L : BoundedDistributiveLattice
3. f : X {}\mrightarrow{} Point(L)
4. ((fdl-hom(L;f) 0) = 0) \mwedge{} ((fdl-hom(L;f) 1) = 1)
5. \mforall{}as,bs:X List List. (fdl-hom(L;f) as \mvee{} fdl-hom(L;f) bs = (fdl-hom(L;f) as \mvee{} bs))
\mvdash{} fdl-hom(L;f) \mmember{} Hom(free-dl(X);L)
By
Latex:
Assert \mkleeneopen{}fdl-hom(L;f) \mmember{} free-dl-type(X) {}\mrightarrow{} Point(L)\mkleeneclose{}\mcdot{}
Home
Index