Step
*
1
3
1
1
of Lemma
free-DeMorgan-algebra-hom-unique
1. T : Type
2. eq : EqDecider(T)
3. dm : DeMorganAlgebra
4. eq2 : EqDecider(Point(dm))
5. f : T ⟶ Point(dm)
6. g : dma-hom(free-DeMorgan-algebra(T;eq);dm)
7. h : dma-hom(free-DeMorgan-algebra(T;eq);dm)
8. ∀i:T. ((g <i>) = (h <i>) ∈ Point(dm))
9. ∀[g,h:Hom(free-dist-lattice(T + T; union-deq(T;T;eq;eq));dm)].
     g = h ∈ Hom(free-dist-lattice(T + T; union-deq(T;T;eq;eq));dm) 
     supposing ∀x:T + T. ((g free-dl-inc(x)) = (h free-dl-inc(x)) ∈ Point(dm))
10. y : T
⊢ (g <1-y>) = (h <1-y>) ∈ Point(dm)
BY
{ (DVar `g' THEN DVar `h') }
1
1. T : Type
2. eq : EqDecider(T)
3. dm : DeMorganAlgebra
4. eq2 : EqDecider(Point(dm))
5. f : T ⟶ Point(dm)
6. g : Hom(free-DeMorgan-algebra(T;eq);dm)
7. ∀[a:Point(free-DeMorgan-algebra(T;eq))]. (¬(g a) = (g ¬(a)) ∈ Point(dm))
8. h : Hom(free-DeMorgan-algebra(T;eq);dm)
9. ∀[a:Point(free-DeMorgan-algebra(T;eq))]. (¬(h a) = (h ¬(a)) ∈ Point(dm))
10. ∀i:T. ((g <i>) = (h <i>) ∈ Point(dm))
11. ∀[g,h:Hom(free-dist-lattice(T + T; union-deq(T;T;eq;eq));dm)].
      g = h ∈ Hom(free-dist-lattice(T + T; union-deq(T;T;eq;eq));dm) 
      supposing ∀x:T + T. ((g free-dl-inc(x)) = (h free-dl-inc(x)) ∈ Point(dm))
12. y : T
⊢ (g <1-y>) = (h <1-y>) ∈ Point(dm)
Latex:
Latex:
1.  T  :  Type
2.  eq  :  EqDecider(T)
3.  dm  :  DeMorganAlgebra
4.  eq2  :  EqDecider(Point(dm))
5.  f  :  T  {}\mrightarrow{}  Point(dm)
6.  g  :  dma-hom(free-DeMorgan-algebra(T;eq);dm)
7.  h  :  dma-hom(free-DeMorgan-algebra(T;eq);dm)
8.  \mforall{}i:T.  ((g  <i>)  =  (h  <i>))
9.  \mforall{}[g,h:Hom(free-dist-lattice(T  +  T;  union-deq(T;T;eq;eq));dm)].
          g  =  h  supposing  \mforall{}x:T  +  T.  ((g  free-dl-inc(x))  =  (h  free-dl-inc(x)))
10.  y  :  T
\mvdash{}  (g  ə-y>)  =  (h  ə-y>)
By
Latex:
(DVar  `g'  THEN  DVar  `h')
Home
Index