Step
*
1
1
2
1
1
1
3
1
of Lemma
free-DeMorgan-algebra-property
1. T : Type@i'
2. eq : EqDecider(T)@i
3. dm : DeMorganAlgebra@i'
4. eq2 : EqDecider(Point(dm))@i
5. f : T ⟶ Point(dm)@i
6. g : Hom(free-DeMorgan-lattice(T;eq);dm)
7. (λp.case p of inl(a) => f a | inr(a) => ¬(f a)) = (g o (λx.free-dl-inc(x))) ∈ ((T + T) ⟶ Point(dm))
8. ∀i:T. ((g <i>) = (f i) ∈ Point(dm))
9. ∀i:T. ((g <1-i>) = ¬(f i) ∈ Point(dm))
10. ∀h:Hom(free-DeMorgan-lattice(T;eq);dm)
(((λp.case p of inl(a) => f a | inr(a) => ¬(f a)) = (g o (λx.free-dl-inc(x))) ∈ ((T + T) ⟶ Point(dm)))
⇒ ((λp.case p of inl(a) => f a | inr(a) => ¬(f a)) = (h o (λx.free-dl-inc(x))) ∈ ((T + T) ⟶ Point(dm)))
⇒ (g = h ∈ Hom(free-DeMorgan-lattice(T;eq);dm)))
11. x1 : T
⊢ (f x1) = ¬(g ¬(<x1>)) ∈ Point(dm)
BY
{ (RWO "dm-neg-inc" 0 THEN Auto) }
Latex:
Latex:
1. T : Type@i'
2. eq : EqDecider(T)@i
3. dm : DeMorganAlgebra@i'
4. eq2 : EqDecider(Point(dm))@i
5. f : T {}\mrightarrow{} Point(dm)@i
6. g : Hom(free-DeMorgan-lattice(T;eq);dm)
7. (\mlambda{}p.case p of inl(a) => f a | inr(a) => \mneg{}(f a)) = (g o (\mlambda{}x.free-dl-inc(x)))
8. \mforall{}i:T. ((g <i>) = (f i))
9. \mforall{}i:T. ((g ə-i>) = \mneg{}(f i))
10. \mforall{}h:Hom(free-DeMorgan-lattice(T;eq);dm)
(((\mlambda{}p.case p of inl(a) => f a | inr(a) => \mneg{}(f a)) = (g o (\mlambda{}x.free-dl-inc(x))))
{}\mRightarrow{} ((\mlambda{}p.case p of inl(a) => f a | inr(a) => \mneg{}(f a)) = (h o (\mlambda{}x.free-dl-inc(x))))
{}\mRightarrow{} (g = h))
11. x1 : T
\mvdash{} (f x1) = \mneg{}(g \mneg{}(<x1>))
By
Latex:
(RWO "dm-neg-inc" 0 THEN Auto)
Home
Index