Step
*
1
1
2
1
1
1
4
of Lemma
free-DeMorgan-algebra-property
1. T : Type@i'
2. eq : EqDecider(T)@i
3. dm : DeMorganAlgebra@i'
4. eq2 : EqDecider(Point(dm))@i
5. f : T ⟶ Point(dm)@i
6. g : Hom(free-DeMorgan-lattice(T;eq);dm)
7. (λp.case p of inl(a) => f a | inr(a) => ¬(f a)) = (g o (λx.free-dl-inc(x))) ∈ ((T + T) ⟶ Point(dm))
8. ∀i:T. ((g <i>) = (f i) ∈ Point(dm))
9. ∀i:T. ((g <1-i>) = ¬(f i) ∈ Point(dm))
10. ∀h:Hom(free-DeMorgan-lattice(T;eq);dm)
      (((λp.case p of inl(a) => f a | inr(a) => ¬(f a)) = (g o (λx.free-dl-inc(x))) ∈ ((T + T) ⟶ Point(dm)))
      
⇒ ((λp.case p of inl(a) => f a | inr(a) => ¬(f a)) = (h o (λx.free-dl-inc(x))) ∈ ((T + T) ⟶ Point(dm)))
      
⇒ (g = h ∈ Hom(free-DeMorgan-lattice(T;eq);dm)))
11. g = (λa.¬(g ¬(a))) ∈ Hom(free-DeMorgan-lattice(T;eq);dm)
⊢ ∀[a:Point(free-DeMorgan-lattice(T;eq))]. ((g a) = ¬(g ¬(a)) ∈ Point(dm))
BY
{ (Auto THEN (ApFunToHypEquands `Z' ⌜Z a⌝ ⌜Point(dm)⌝ (-2)⋅ THENM Reduce (-1)) THEN Auto) }
Latex:
Latex:
1.  T  :  Type@i'
2.  eq  :  EqDecider(T)@i
3.  dm  :  DeMorganAlgebra@i'
4.  eq2  :  EqDecider(Point(dm))@i
5.  f  :  T  {}\mrightarrow{}  Point(dm)@i
6.  g  :  Hom(free-DeMorgan-lattice(T;eq);dm)
7.  (\mlambda{}p.case  p  of  inl(a)  =>  f  a  |  inr(a)  =>  \mneg{}(f  a))  =  (g  o  (\mlambda{}x.free-dl-inc(x)))
8.  \mforall{}i:T.  ((g  <i>)  =  (f  i))
9.  \mforall{}i:T.  ((g  ə-i>)  =  \mneg{}(f  i))
10.  \mforall{}h:Hom(free-DeMorgan-lattice(T;eq);dm)
            (((\mlambda{}p.case  p  of  inl(a)  =>  f  a  |  inr(a)  =>  \mneg{}(f  a))  =  (g  o  (\mlambda{}x.free-dl-inc(x))))
            {}\mRightarrow{}  ((\mlambda{}p.case  p  of  inl(a)  =>  f  a  |  inr(a)  =>  \mneg{}(f  a))  =  (h  o  (\mlambda{}x.free-dl-inc(x))))
            {}\mRightarrow{}  (g  =  h))
11.  g  =  (\mlambda{}a.\mneg{}(g  \mneg{}(a)))
\mvdash{}  \mforall{}[a:Point(free-DeMorgan-lattice(T;eq))].  ((g  a)  =  \mneg{}(g  \mneg{}(a)))
By
Latex:
(Auto  THEN  (ApFunToHypEquands  `Z'  \mkleeneopen{}Z  a\mkleeneclose{}  \mkleeneopen{}Point(dm)\mkleeneclose{}  (-2)\mcdot{}  THENM  Reduce  (-1))  THEN  Auto)
Home
Index