Step
*
2
1
1
2
1
1
of Lemma
free-dlwc-basis
.....subterm..... T:t
1:n
1. T : Type
2. eq : EqDecider(T)
3. Cs : T ⟶ fset(fset(T))
4. x : Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
5. x = \/(λs.{s}"(x)) ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
6. deq-fset(deq-fset(eq)) ∈ EqDecider(Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))
7. x ∈ fset(fset(T))
8. y : fset({s:fset(T)| s ∈ x} )
9. x = y ∈ fset({s:fset(T)| s ∈ x} )
10. s : {s:fset(T)| s ∈ x} 
⊢ /\(λx.free-dlwc-inc(eq;a.Cs[a];x)"(s)) = {s} ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
BY
{ (BLemma `lattice-fset-meet-free-dlwc-inc` THEN Auto) }
1
1. T : Type
2. eq : EqDecider(T)
3. Cs : T ⟶ fset(fset(T))
4. x : Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
5. x = \/(λs.{s}"(x)) ∈ Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
6. deq-fset(deq-fset(eq)) ∈ EqDecider(Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))
7. x ∈ fset(fset(T))
8. y : fset({s:fset(T)| s ∈ x} )
9. x = y ∈ fset({s:fset(T)| s ∈ x} )
10. s : {s:fset(T)| s ∈ x} 
⊢ ↑fset-contains-none(eq;s;x.Cs[x])
Latex:
Latex:
.....subterm.....  T:t
1:n
1.  T  :  Type
2.  eq  :  EqDecider(T)
3.  Cs  :  T  {}\mrightarrow{}  fset(fset(T))
4.  x  :  Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x]))
5.  x  =  \mbackslash{}/(\mlambda{}s.\{s\}"(x))
6.  deq-fset(deq-fset(eq))  \mmember{}  EqDecider(Point(free-dist-lattice-with-constraints(T;eq;x.Cs[x])))
7.  x  \mmember{}  fset(fset(T))
8.  y  :  fset(\{s:fset(T)|  s  \mmember{}  x\}  )
9.  x  =  y
10.  s  :  \{s:fset(T)|  s  \mmember{}  x\} 
\mvdash{}  /\mbackslash{}(\mlambda{}x.free-dlwc-inc(eq;a.Cs[a];x)"(s))  =  \{s\}
By
Latex:
(BLemma  `lattice-fset-meet-free-dlwc-inc`  THEN  Auto)
Home
Index